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PREFACE

In the present volume we have tried to present in an elementary and
formal manner the mathematical theory of games of strategy and some of
its applications. Although many of the applications are discussed in mili-
tary terms, they can easily be formulated in economic or social seience
terms.

An attempt has been made to develop the subject matter in such a
way as to make the volume adaptable as a text on the theory of games in
colleges and universities. The analytical level of the book is such that one
year of calculus can serve as a prerequisite for the course.

The book starts in Chapter 1 with an exposition of games of strategy,
with examples taken from parlor games as well as from military games.
The next two chapters treat the basic topics in the theory of finite games,
i.e., the existence of optimal strategies and their properties. Chapters 4
and 5 deal with the representation of games and the computation of op-
timal strategies. Since many games involve an infinite number of strate-
gies, Chapters 6, 7, and 8 deal with such games by developing the necessary
mathematics (e.g., probability distribution functions and Stieltjes inte-
grals) for handling infinite games. The results on infinite games are applied
in Chapters 9 and 10 to two general classes of games—timing games and
tactical games. Finally, the last chapter provides an application of mo-
ment space theory to the solution of infinite games.

Many of the chapters are independent of one another; for example, the
chapter on games in extensive form may be introduced after Chapter 1,
while the last four chapters may be studied in any order after Chapter 7.

This study was undertaken by The RAND Corporation as a part of

its research program for the United States Air Force.
vii
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1 GAME, STRATEGY,
AND SADDLE-POINT

1. INTRODUCTION

The theory of games of strategy may be deseribed as a mathematical
theory of decision-making by participants in a competitive environment.
In a typical problem to which the theory is applicable, each participant
can bring some influence to bear upon the outcome of a certain event; no
single participant by himself nor chance alone can determine the out-
come completely. The theory is then concerned with the problem of choos-
ing an optimal course of action which takes into account the possible
actions of the participants and the chance events.

Examples of games of strategy are parlor games such as poker, chess,
and bridge, military games such as the defense of targets against attack,
and economic games such as the price competition between two sellers.
Each of these games of strategy allows the players to make use of their
ingenuity in order to influence the outcome. Although some of these games
involve elements of chance (e.g., the cards dealt in poker and the hit of a
target), we shall exclude from our discussion games of chance such as black-
jack and craps since their outcomes depend entirely upon chance and
cannot be influenced by the decisions of the players.

Games of chance have been studied mathematically for many years;
the mathematical theory of probability was developed from their study.
Although strategic situations have long been observed and recorded, the
first attempt to abstract them into a mathematical theory of strategy was
made in 1921 by Emile Borel. The theory was firmly established by John
von Neumann in 1928 when he proved the minimax theorem, the funda-
mental theorem of games of strategy. However, it was not until the pub-

lication in 1944 of the impressive work, Theory of Games and Economic
1
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Behavior, by John von Neumann and Oskar Morgenstern, that the mathe-
matical theory of games received much attention. This book emphasized a
new approach to the general problem of competitive behavior through a
study of games of strategy. Since then the theory has been applied to
game-like problems—not only in economics, but also in the military and
politics.

2. DESCRIPTION OF A GAME OF STRATEGY

A game of strategy is described by its set of rules. These rules specify
clearly what each person called a player is allowed or required to do under
all possible circumstances. The rules define the amount of information, if
any, each player receives. If the game requires the use of chance devices,
the rules describe how the chance events shall be interpreted. They also
define the time the game ends, the amount each player pays or receives, and
the objective of each player.

From the rules we can obtain such general properties of the game as
the number of moves, the number of players, and the payoff. The game
is finste if each player has a finite number of moves and a finite number of
choices available at each move. It is convenient to classify games according
to the number of players, i.e., as 2-person, 3-person, etc. It is also conven-
ient to distinguish between games whose payoffs are zero-sum and those
whose are not. If the players make payments only to each other, the game
is said to be zero-sum.

We shall first analyze the 2-person, zero-sum, finite game—most parlor
games and many military games are of this type. It is clear that in such a
game the winnings of one player are the losses of the other player.

To simplify the mathematical description of a game, we introduce the
concept of a “strategy.” In the actual play of a game, instead of making his
decision at each move each player may formulate in advance of the play
a plan for playing the game from beginning to end. Such a plan must be
complete and cover all possible contingencies that may arise in the play.
Among other things, this plan would incorporate any information which
may become available to the player in accordance with the rules of the
game. Such a complete prescription for a play of a game by the player is
called a strategy of that player. A player using a strategy loses no freedom
of action since the strategy specifies the player’s actions in terms of the
information that might become available.

We may think of a strategy of a player as a set of instructions for play-
ing the given game from the first move to the last. Conversely, each dif-
ferent way that a player may play a game is a strategy of that player. If
we enumerate all the different ways for a player to play the game, we ob-
tain all the strategies of that player. Of course, many of these strategies
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may be obviously poor ones, but they are included in the initial
enumeration.

Every pair of strategies, consisting of one strategy for each player,
determines a play of the game, which in turn determines a payoff to each
player. Thus we may consider a play of a game to consist of each player’s
making one decision, namely the selection of a strategy.

In terms of this notion of strategy, we can now describe, corresponding
to any given game, an equivalent game of much simpler character. Let us
call the two players Blue and Red. Suppose Blue has m strategies, which
may be designated by the numbers

1=1,2...,m.
Suppose Red has n strategies, which we may designate by
i=12...,n

Then on the first move Blue chooses some strategy . On the next move,
Red, without being informed what choice Blue has made, chooses strategy
j. These two choices determine a play of the game and a payoff to the two
players. Let a;; be the payoff to Blue. Since the game is zero-sum, the
payoff to Red is —ay;.

The game is thus determined by Blue’s payoff matrix,

i1 Q12 Q1n

dg1 G222 Qon
A= :

Ar1 Am2 .+ .. QOmn

In this matrix each Blue strategy is represented by a row; each Red strategy
is represented by a column. If Blue chooses the 7th strategy or ¢th row and
Red chooses the jth strategy or jth column, then Red is to pay Blue the
amount a;; Blue wants a,; to be as large as possible, but he controls only
the choice of his strategy . Red wants a.; to be as small as possible but he
controls only the choice of his strategy j. What are the guiding principles
which should determine the choices and what is the expected outcome
of the game?

3. ILLUSTRATIVE EXAMPLES
ExampLE 1. FuncrioNn oF A Fienp COMMANDER.

Military action by a commander against an enemy requires him to
evaluate a situation and make a decision. The evaluation is made by con-
sidering the given mission, the capabilities of the enemy, and the possible
courses of action available to both sides, and by comparing the likely con-
sequences of one’s own courses of action. These are the rules of the game.
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From his possible courses of action, the commander selects an optimal
one—a course which promises to be most successful in accomplishing the
mission.

The military doctrine covering the above evaluation is discussed in
detail in the Naval Manual of Operational Planning of the Naval War
College. The Manual states, “Each of our own courses of action ... is
separately weighed in turn against each capability of the enemy which may
interfere with the accomplishment of the mission. The results to be ex-
pected in each case are visualized. The advantages and disadvantages
noted as a result of the analysis for each of our own courses of action are
summarized and the various courses of action are compared and weighed.”
A commander thus enumerates the possible opposing courses of action and
their outcomes. Each course of action is a strategy for the commander and
each outcome yields a payoff.

Suppose that the mission of the Blue forces is to capture an objective
defended by the Red forces. The Blue commander analyzes the possible
courses of action within the capabilities of the Red forces which can affect
the capture of the objective. Then Blue lists the various ways of capturing
the objective. Let us assume that this yields three possible courses of
action, 7y, 7y, 73, to the Red commander and three possible courses of action,
by, bs, bs, to the Blue commander. There are then nine possible outcomes
which may be summarized by a 3 X 3 matrix. For example, the matrix
may have the following descriptive entries:

“ESTIMATE OF THE SITUATION” BY BLUE COMMANDER

Red courses of action
T Ts T3
b, | Fail Succeed Succeed
Blue courses by | Draw Succeed Draw

of action b; | Succeed Draw Fail

In this illustrative situation, the Blue commander estimates that if he
uses strategy b, for example, and the Red commander uses r;, Blue will
fail to capture the objective. However, Blue will succeed if he uses strat-
egy b; and the Red commander uses strategy r; or r2. Similarly, the remain-
ing six outcomes are the Blue commander’s evaluation of the outcomes
with respect to various courses of actions.

The problem of the Blue commander is to select the best course of
action, or the strategy which will secure for him the most likely chance
of capturing the objective. The Red commander will likewise try to select
his best course of action, or that strategy which will minimize Blue’s chance
of capturing the objective. We thus have the following problem in com-
petitive behavior: Blue wishes to maximize the outcome by a proper
choice of his strategy, and Red wishes to minimize this same outcome, also
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by a proper choice of Red’s strategy, where the outcome depends upon
both Blue’s and Red’s choices.

The established doctrine of the “Estimate of the Situation’ dictates
the selection of the course of action which promises to be most successful
in the accomplishment of the mission regardless of the course selected by
the Red commander. Accordingly, Blue would choose, in this illustrative
example, strategy b, which yields either a successful outcome or a draw.
For if the Blue commander uses a strategy b, or b; he may fail to accom-
plish the mission. Strategy b, represents the most conservative decision of
the Blue commander. It isequivalent to assuming that the Red commander
can find out the decision of the Blue commander. In a later section we
shall see how the Blue commander can, by taking chances, or bluffing, ob-
tain on the average a more advantageous outcome. He accomplishes this
by mixing his strategies, or by choosing his strategy with a chance device.

ExampLE 2. Tae GamMe “Morga.”

This is a game which has only personal moves. Each player shows one,
two, or three fingers and simultaneously calls his guess of the number of
fingers his opponent will show. If just one player guesses correctly, he wins
an amount equal to the sum of the fingers shown by himself and his
opponent; otherwise the game is a draw.

This game consists of one move for each player—the choice of a number
to show and a number to guess. We may represent a strategy for each
player by a pair of numbers (s, g), where s = 1, 2, 3 is the number of fingers
he shows and g = 1, 2, 3 is his guess of the number of fingers his opponent
will show. It is evident that each player has nine strategies, and thus there
are 81 different possible plays of the game. With each of these 81 ways of
playing the game, there is associated a payment to the players, as described
by the rules of the game. These payments are summarized by a payoff
matrix. In the following payoff matrix, the entries represent payments
to Blue. Red will receive the negative of these payments.

Mogrra Payorr

Red strategies

(LD L2 1,3 21D 2,2 23 G 62 G3)

anl o 2 2 -3 0 0 -4 0 0]
62| -2 0 0 0 3 3 -4 0 0
1,3 | -2 0 0 -3 0 0 0 4 4
o)) 3 0 3 0 -4 0 0 -5 0
Blue (2, 2) 0 -3 0 4 0 4 0 -5 0
strategies (2, 3) o -3 ] 0 -4 0 5 0 5
3,1) 4 4 0 0 0 -5 0 0 -6
3,2 0 0 -4 5 5 0 0 0 -6

3,3)L 0 0 -4 0 0o -5 6 6 0o
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ExampLE 3. Tee Game “ug Her.”

This game involves both chance and personal moves. Although the
game can be played by several people, we shall describe it for two players.
From an ordinary deck of cards, a dealer gives a card at random to a receiver
and takes one himself ; neither player sees the other’s card. The main object
is for each to obtain a higher eard than his opponent. The order of value
is ace, two, three, .. ., ten, jack, queen, king. Now if the receiver is not
content with his card, he may compel the dealer to change with him; but
if the dealer has a king, he is allowed to retain it. If the dealer is not content
with the card which he at first obtained, or which he has been compelled
to take from the receiver, he is allowed to change it for another taken out
of the deck at random; but if the card he then draws is a king, he is not
allowed to have it, but must keep the card which he held after the receiver
exercised his option. The two players then compare cards, and the player
with the higher card wins. If the dealer and receiver have cards of the same
value, the dealer wins.

This game consists of three moves: The first move is a chance move,
one card each being dealt at random to the receiver and dealer. The second
move is a personal move by the receiver, who exchanges his card with the
the dealer or stays with the original card. The third move is a personal
move by the dealer, who exchanges his card with a card from the deck or
stays with the card he holds.

The game can be summarized by defining a strategy for the receiver
to be a determination of change or stay for each of the thirteen cards he
may receive. One such strategy might be

1 23456789 10J QK
S CSSCCS8SSC 8 C 8]

where “C”’ means change and “S”’ means stay. Thus, the above strategy
tells the receiver to change if he receives an ace, stay if he receives a two,
change if he receives a three, . . ., change if he receives a queen, stay if
he receives a king. Note that the strategy is a complete set, of instructions.
It is apparent that the receiver has 2% strategies. Of course, most of them
are poor strategies and should not be played, as will be described in a
subsequent section.

Since the dealer’s personal move, the third move of the game, is made
after the receiver has exercised his option, the dealer may then have infor-
mation about the receiver’s card. Therefore a strategy for the dealer must
include this information. However, to simplify the enumeration of the
dealer’s strategy, let us make the following two observations about rational
behavior of the dealer:
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(i) If the receiver exchanges cards with the dealer and the dealer
thereby obtains a lower card than the receiver, then the dealer
should exchange with the deck.

(ii) If the receiver exchanges cards with the dealer and the dealer
thereby obtains a card at least as high as the receiver’s, then the
dealer should stay with that card.

Tet us refer to these two instructions of rational behavior as R. They
have the effect of eliminating obviously poor strategies. Now the strat-
egies of the dealer may be enumerated in a manner similar to those of the
receiver and at the same time incorporate the information about the re-
ceiver. A strategy for the receiver may be written as follows:

(R; SCCS8...80C).

This strategy tells the dealer to do the following: if the receiver exchanges
cards, the dealer follows the two instructions R of rational behavior; if the
receiver stays with his card and the dealer holds an ace, then the dealer
stays; if the receiver stays and the dealer holds a two, then the dealer
changes with the deck; etc. The dealer now has 2'% strategies. Again, most
of these strategies will turn out to be poor strategies as will be described
in a later section.

ExampLE 4. CoroNEL BLorro GAME.

Colonel Blotto and his enemy each try to occupy two posts by properly
distributing their forces. Let us assume that Colonel Blotto has 4 regi-
ments and the enemy has 3 regiments which are to be divided between
the two posts. Define the payoff to Colonel Blotto at each post as follows:
If Colonel Blotto has more regiments than the enemy at the post, Colonel
Blotto receives the enemy’s regiments plus one (the occupation of the post
is equivalent to capturing one regiment); if the enemy has more regiments
than Colonel Blotto at the post, then Colonel Blotto loses one plus his
regiments at the post; if each side places the same number of regiments,
it is a draw and each side gets zero. The total payoff is the sum of the
payoffs at the two posts.

Colonel Blotto has 5 strategies, or five different ways of dividing 4 regi-
ments between the two posts. The enemy has 4 strategies, or four different
ways of dividing his 3 regiments. There are therefore twenty ways for the
two sides to distribute their forces.

It is evident that if Colonel Blotto places 3 regiments at the first post

“and 1 at the second, and if the enemy places 2 regiments at the first post
and 1 at the second, then Blotto wins what amounts to 3 regiments.
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However, if Colonel Blotto places 2 regiments at each post and the enemy
places all of his 3 regiments at either post, then Colonel Blotto loses 2
regiments. The following payoff matrix summarizes the payment to
Colonel Blotto for each of the twenty possible distributions:

CoroNEL BrorTo Pavorr

Enemy strategies
30 03 21 12

(4,01 4 0 2 1

0,4 1 2

Colonel Blotto ©, 1) X 3 0
strategies G D 1 -

,3) | — 0 3

2 2

ExampLE 5. A CoiN Gurssing GAME.

Two players secretly choose to conceal 0, 1, or 2 coins. Each, in agreed
turn, tries to guess exactly the total number concealed by the two players.
However, the second guesser must guess a different number from that
called by the first. If a player guesses correctly, he receives 1 from the
other; otherwise 0.

A strategy involves a joint decision of what to conceal and what to
call. We may represent a strategy of Blue by a vector (z, z 4+ y) where
z=0,1,0or 2and y =0, 1, or 2. The first component, x, of the vector
represents the number to conceal; the second component, z + ¥, represents
the number to call. Thus Blue has 9 strategies.

A strategy for the player guessing second, call him Red, must include
the information about Blue’s guess, which will be 0, 1, 2, 3, or 4. We can
represent a Red strategy by a vector,

(H; Lo, Z1y X2, X3, 1)4),

where H = 0, 1, 2 is the number of coins concealed and z; is the number of
coins to call if Blue calls 7. Red has 10 strategies. They are enumerated
as follows:

(1) = (0; 10012), (2) = (0; 10022), (3) = (0; 10112),

@) = (0; 10122), (5) = (1; 12123), (6) = (1; 12323),

() = (2; 22343), (8) = (2; 22443), (9) = (2; 23343),
(10) = (2; 23443).

The payoff matrix is now readily written. It is
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Coix GaME PaYorF

Red strategies

M @ 6 @ 6 6 @O @ © 00
@of 1 1 1 1 -1 -1 =1 -1 -1 -1
ont{-1 -1 -1 -1 1 1 -1 -1 0 O
0,20l -1 -1 0 0 -1 1 1 1
1,1 i1 1 1 1 -1 -1 o0 o0 -1 -1
a,2) 0 0 -1 -1 1 1 =1 0 -1
“,3)j-1 0o -1 o0 -1 -1 1 1 1 1
2,2 1 1 1 1 0 -1 0 -1 0 -1
2, 3) 0 -1 0 -1 1 1 -1 -1 -1 -1
egHi-1 -1 -1 -1 -1 -1 1 1 1 ]

o
—

Blue
strategies

ExampLE 6. SimpLiFIED POKER.

Each of two players antes one unit. They obtain a fixed hand by draw-
ing one card apiece from a pack of three cards numbered J, Q, K. Then
the players choose alternately to bet one unit or to pass without betting.
Two successive bets or passes terminate a play, at which time the player
holding the higher card wins the amount previously wagered by the other
player. A player passing after a bet also ends a play and loses his ante.

There are six possible deals. For each deal the plays of the game may
be diagrammed as shown in Fig. 1. We see that for each deal there are
five plays. Thus, thirty possible plays exist in this game.

Ficure 1

A strategy for the player choosing first, call him Blue, must tell him
whether to pass or bet for each of the three possible cards he may hold.
A convenient way to code Blue's strategy is by a vector (as, aq, ax)
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where a; gives the instructions for card ¢ = J, Q, K. Then a; may be coded
as follows:

1 means pass in round 1 and bet in round 2

{0 means pass in round 1 and pass in round 2
a; =
2 means bet in round 1.

It is clear that Blue has 3 X 3 X 3 = 27 strategies.
Similarly we can represent Red’s strategies by a vector (b, bg, bx)
where b; = 0, 1, 2, 3 gives the instructions for card <.

means pass if Blue passes, pass if Blue bets
means pass if Blue passes, bet if Blue bets
means bet if Blue passes, pass if Blue bets
means bet if Blue passes, bet if Blue bets.

b: =

WN=O

Hence Red has 4 ‘X 4 X 4 = 64 strategies.

4. RELATIONS AMONG EXPECTATIONS

Suppose Blue has m strategies and Red has n strategies; then the game
is determined by the m X n matrix A = (a;) where a,; is Blue's payoff if
he uses his ith strategy and Red uses his jth strategy. Since we are assuming
that the payoff is from Red to Blue, Red’s payoff is —a;;. Blue’s objective
in the game is to make a;; as large as possible, whereas Red wants to make
—a,; as large as possible, or a,; as small as possible. In terms of this payoff
to Blue, we may refer to Blue as the maximizing player and Red as the
minimizing player.

Now for any strategy ¢ which Blue may choose, he can be sure of
getting at least

min aij,
j<n
where the minimum is taken over all of Red’s strategies. Blue is at liberty
to choose 4; therefore, he can make his choice in such a way as to insure
that he gets at least
max min a;;.
i<m j<n

Similarly, for any strategy 7 which Red may choose, he can be sure

of getting at least

min (—a;) = — Max a;;.

1<m 1<m
That is, for any strategy 7 which Red may choose, he can be sure that
Blue gets no more than

max agj.
i1<m
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Since Red is at liberty to choose 7, he can choose it in such a way that
Blue will get at most

min max a;;.
J<n i<m

Therefore, there exists a way for Blue to play so that Blue gets at least

max min a;;,
i<m j<n

and there exists a way for Red to play so that Blue gets no more than

min max a;.
j<n i<m

In general, these two quantities are different, but satisfy the relationship

max min a;; < min max a;;.
i<m j<n ji<n i<m

We prove the latter inequality as follows: Given any ¢, then

min a;; < a;j for all 7.
isn

Given any j, then
max a;; = aij for all 4.
1<m

Hence we have
min a;; < a;; < Max a;;

i<n i<m
or min ¢;; < max a;;.
i<n i<m

Since the right-hand side of the preceding inequality is independent of
i, we have, by taking the maximum of both sides,

max min g;; < mMax a;;.
1<m j<n i<m

Now the left-hand side of the preceding inequality is independent of j.
By taking the minimum of both sides, we have

(1.1) max min a;; < min max a;.
i<m j<n i<n i<m

Another way of establishing the inequality is the following: Suppose

max mMin &;; = Qs
i<m j<n

min max g;; = dqg.
i<n i<m

Then it follows that a,, is the minimum of the rth row, or
Qrs _<_ Arg.
Also, s is the maximum of the gth column; thus

G < Qag.
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Thus we have
Ayrs S arﬂ S aaﬁ

and the inequality is proven.

Ezxamples. (a) Suppose the game is such that its payoff matrix is
given by
2 3 4 -1
A=|5 -2 2 -3}
4 1 3 2

Then max min a;; = 1 and min max a;; = 2. In this game, Blue can receive
at least 1. Blue can guarantee this amount by playing his third strategy.
The most Red needs to pay or the most that Blue can get is 2. Red can
assure this upper bound by playing his fourth strategy.

(b) In Example 2, the game Morra, we have

maxmin a;; = —3 and min max a;; = 3.

There is a way for Blue to play so that he loses no more than 3 and for
Red to play so that Blue wins no more than 3.

5. SADDLE-POINTS

If it happens that the inequality (1.1) becomes an equality, or that
1.2) max min a;; = min max ¢;; = v
i<m j<n ji<n i<m
then Blue can choose a strategy so as to get at least this common value,
and Red can keep Blue from getting more than v. In this case, there are
strategies ¢* and j* for the two players such that, for all 7 and j,

(13) Qi 5% S Qixye S Qx5

and Qv = 0.

Thus Blue cannot do better than to choose ¢*; similarly, Red cannot do
better than to choose j*.

We refer to ¢*, 7* as opitmal strategies of Blue and Red, respectively.
The optimal strategies have the following properties:

(i) If Blue chooses ¢*, then no matter what strategy Red chooses,
Blue can get at least ».

(ii) If Red chooses 7*, then no matter what strategy Blue chooses,
Blue can get at most v.

(iii) If Blue were to announce in advance that he planned to play
strategy 7*, Red could not thereby take advantage of this infor-
mation and reduce Blue’s payoff. Similarly, if Red were to
announce j*, Blue could not increase his payoff.
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If the condition (1.2) is satisfied, then the matrix A = (a;;) issaid to
have a saddle-point at ¢*, 7* and its value is aw+ = v. We call v the value
of the game. It represents the amount that Blue should pay Red at the
start of the game in order to equalize the game with respect to winnings.

It is easily seen that conditions (1.2) and (1.3) are equivalent: thus
condition (1.2) is satisfied if and only if there exists a pair of strategies
7%, 7* satisfying (1.3). From (1.3) we also have that

mMax G;* = min am; = .

i<m j<n
Hence a necessary and sufficient condition that a game have a saddle-point
is that there exists a member of the payoff matrix which is simultaneously
the minimum of its row and the maximum of its column.

A game may have several saddle-points. In such a case all the saddle-
points have the same value. Each location of a saddle-point provides an-
other solution or optimal strategy.

Ezxample. The matrix

1 -3 -2
2 5 4
2 3 2

has a saddle-point in its lower left-hand corner, since this payoff, 2, is
simultaneously the minimum of the third row and the maximum of the
first column. Hence Blue can expect to get at least 2 in this game (by
choosing the third row) and Red can keep Blue from exceeding 2 (by choos-
ing the first column). These strategies, i* = 3, j* = 1, are optimal strat-
egies of Blue and Red, respectively. The value of the game is 2.

Although the lower right-hand corner element of this payoff matrix is
2, which is the value of the game, it is not a saddle-point. This element fails
to be the maximum payoff in its column. However, ¢* = 2, 7* = 1 locates
another saddle-point.

The pair of optimal strategies, ¢*, 7*, is also said to be a solution of the
game having a value v = axx.

ExAMPLE 7. ARMAMENTS.

Suppose that fighter planes can be equipped with any of these arma-
ments—guns, rockets, and toss-bombs—or for ramming. These fighters are
to be used against bombers of three types: full firepower and low speed,
partial firepower and medium speed, and no firepower and high speed.
We wish to determine the best type of armament for the fighter and the
best type of bomber. Assume that we are able to establish the effectiveness
of each type of fighter versus each type of bomber. This represents the
payoff and is measured by a bomber attrition factor per fighter.

Let Blue be the Fighter Command which has four strategies and let
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Red be the Bomber Command which has three strategies. A strategy is to
be picked by each player independently of the choice of the other. Let the
payoff to Blue be the probability that the fighter destroys the bomber.
Suppose, for example, the payoff matrix is as follows:

ARMAMENTS Pavorr

Bomber Command (Red)

1. 2. 3.
Full fire, Partial fire, No fire,
low speed medium speed high speed

] 1. Guns 0.30 0.25 0.15

Fighter o Rockets 0.18 0.14 0.16
Command 3. Toss-b 0.22

(Blue) 3 'oss-bombs 0.35 . 0.17

4. Ramming 0.21 0.16 0.10

The least that the Fighter Command can get is 0.15, 0.14, 0.17, or 0.10,
depending upon whether he uses guns, rockets, toss-bombs, or ramming,.
These are the minima of the rows. Therefore, Blue will pick toss-bombs,
since they yield the most, 0.17. Now the most the Bomber Command will
have to pay is 0.35, 0.25, or 0.17, depending on which firepower he adopts.
These numbers are the maxima of the columns. Therefore, by picking no
firepower, he pays the least, 0.17.

The best strategy for Blue is his third strategy, toss-bombs. The best
strategy for Red is also the third, no firepower. The value of the game to
the fighter is 0.17. If Blue uses toss-bombs, he is sure of getting at least
0.17. If Red uses no firepower, he is sure of losing no more than 0.17. This
is the best that both players can do.

6. GAMES WITH PERFECT INFORMATION

We have seen that if a game has a saddle-point, it is formally easy to
find optimal strategies of this game. We look for an element in the payoff
matrix which is simultaneously the minimum of its row and the maximum
of its column. The location of this element yields optimal strategies of the
two players. Having found a saddle-point, we have determined a solution
of the game. Of course, the size of the payoff matrix determines the relative
ease of finding the saddle-point.

There exists a large class of games, referred to as games with perfect
information, that have saddle-points. In a game with perfect information,
the players move alternately and at each move a player is completely in-
formed about the previous moves, chance or personal, in the game. Ex-
amples of games with perfect information are chess and backgammon.
Bridge and poker are not games of perfect information since the player
does not know the cards dealt to the other players.
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Thus, if the strategies for chess were enumerated, we could find optimal
strategies by locating the saddle-points in a payoff matrix whose entries
consist of 41, 0, —1. The existence of a saddle-point in the game of chess
follows from the fact that it is & game with perfect information. However,
because of the large number of strategies and the size of the payoff matrix,
the value of the game (which will be +1, 0, or —1) and the optimal strate-
gies for chess have not been computed.
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1. PRELIMINARIES
We have seen that if the payoff matrix 4 = (a;) is such that

(2.1) max min a;; = min max a.;,
i<m j<n j<n i<m
then Blue has a strategy ¢* and Red has a strategy j* such that
(22) [ Z Qikjx for all ]:,
Aiz* S Qixg* for all 1.

We called ¢*, j* optimal strategies of Blue and Red, respectively, and the
pair ¢*, j* is said to be a solution of the game. In this case the solution can
be obtained by finding the element of the matrix (a.;) which is simultane-
ously the minimum of its row and the maximum of its column. Further,
even if a player announces, prior to the play of a game, the optimal strategy
he plans to use, his opponent cannot take advantage of this information.
In other words, if (2.1) holds there is no reason for secrecy with respect to
strategy choices on the part of either player.

Ezample. In the game whose payoff matrix is

1 4 1
2 3 4]
0 -2 7

there is a saddle-point at ¢ = 2, j = 1 and its value is 2. If Blue an-
nounces he plans to play strategy ¢ = 2, then Red cannot reduce Blue’s
winnings below 2, since Red will then do best by choosing j = 1. Sim-
ilarly, if Red announces he plans to play his first strategy, Blue cannot

increase his winnings above 2, since Blue will then choose ¢ = 2.
16
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2. GAMES WITHOUT SADDLE-POINTS

Let us now consider games whose payoff matrices are such that

(2.3) max min a;; < min max a,;.

i<m j<n Jj<n i<m
The left-hand side of the inequality represents the least Blue can get and
the right-hand side represents the most Blue can get. In other words,
Blue has a strategy which assures him of getting at least

max min a;;
i<m j<n

and Red has a strategy which assures him that Blue cannot get more than

min max a;;.

j<n i<m
Since these two quantities are unequal, we have not arrived at a solution to
the game.

Ezxample. The game defined by the payoff matrix

[5 4]
3 4
does not have a saddle-point. For here we have

min max a;; = 4,
j<2 i<2

max min a;; = 3,
i<2 ;<2

and max min ¢;; < min max a;.

Blue can guarantee himself a payoff of 3 units. However, Red can guar-
antee that it won’t cost him more than 4 units. Therefore, Blue will try to
get more than 3 units and Red will try to cut his cost below 4 units, or
Blue should win between 3 and 4 per play.

Let us examine Blue’s reasoning in this situation. Suppose Red could
discover Blue’s optimal strategy, perhaps by computing it. Then if this
strategy is Blue’s first strategy, Red can drive Blue’s winnings down to
1; if the strategy is Blue’s second strategy, his winnings will be 3. There-
fore, if Blue’s strategy were discovered, his winnings would be either 1
or 3 on each play. However, Blue is trying to get between 3 and 4. Thus,
Blue is at a disadvantage if Red knows Blue’s strategy.

It seems then that Blue should concentrate on trying to prevent Red
from discovering the strategy. One way would be for Blue to choose his
strategy at random. Red then could not discover Blue’s strategy because
Blue would not know the strategy in advance of the play. On the other
hand, if Blue knew Red’s strategy then Blue could get either 5 or 4,
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whereas Red is trying for between 3 and 4 per play. Hence Red should also
choose his strategy at random.

3. MIXED STRATEGIES

In a game without a saddle-point, we saw that a player’s choice of a
strategy will depend on his opponent’s choice. Therefore, it is very im-
portant that a player find out his opponent’s choice of strategy—hence, it
is essential that a player’s choice of a strategy be unknown to his opponent.
Each player will concentrate on keeping his own intentions secret. One
way to do this is by using a random device for selecting a strategy.

We shall now extend the notion of a strategy which will satisfy the
preceding discussion. A player, instead of choosing a single strategy, may
leave the choice of the strategy to chance. That is, he may choose a prob-
ability distribution over his set of strategies and then the associated random
device selects the particular strategy for the play of the game. Such a
probability distribution over the whole set of strategies of a player is a
mized strategy.

The function of a mixed strategy is to keep the opponent from dis-
covering the strategy. If a game has a saddle-point, then there is no dis-
advantage to a player if his chosen strategy is found out by his opponent.
However, if the game does not have a saddle-point, it is a definite disadvan-
tage for a player to have his strategy discovered by his opponent. A mixed
strategy provides a method for a player to protect himself against having
his particular strategy found out by his opponent; choosing from several
different strategies at random, with only their probabilities determined, is
an effective protection against being found out. The opponent cannot
learn the particular strategy in advance, since the player does not know
it himself. The strategy is selected at the last moment with the help of a
random device.

The game now requires each player to select independently a mixed
strategy. The outcome will now be measured in terms of expectation.

We shall represent mixed strategies by column matrices. Let z; be the
probability of selecting strategy 7. Then a mixed strategy, or probability
distribution X, for Blue may be represented by a column maftrix

n
X2

Tm,

where z; > 0, 1=1,2,...,m
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m
and > X = 1.
=1
Similarly, if y; is the probability of selecting strategy j, then a mixed
strategy for Red is a column matrix

Y1
Yo
Y=1"]
Yan
where y;i = 0, i=L2...,n
n
and zyj=1.

If it happens that z; = 1 for some ¢, then z is called a pure strategy.

Having defined mixed strategies as probability distributions, we need
to compute expected payoffs. Suppose Blue chooses strategy ¢ and Red
chooses mixed strategy Y; the expected payoff to Blue is

n
h:i = Z aiy;,
j=1

which is given by the 7th component of the column matrix
ha
hy
H=AY =| °
P,
If Red uses strategy 7 and Blue uses mixed strategy X, the expected payoff
to Blue is

m
kj = .21 Qa;;2;,

which is the jth component of the row matrix K’, where
K' = X,A = (k1, kg, ey kn).
If Blue and Red use mixed strategies, X, Y, respectively, then the expected
payoff to Blue is
E=XAY = §1 3 ayzy; = K'Y = X'H.
j=1li=1

Example. In the Colonel Blotto payoff matrix (Example 4), if the
enemy uses the mixed strategy
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Y =

(R e IS

and Colonel Blotto uses a pure strategy, Blotto’s expectation for each of
his pure strategies is H = AY, or

4 0 2 17~ 21
04123 1
H=| 1 -1 3 0]|,[=(1}
-1 10 3}|:2 3
-2 -2 2 2|+ 1

where the components of H represent Colonel Blotto’s receipts corres-
ponding to each one of his five pure strategies. Now, if the two players’
strategies are

1

[l el

—

o)
]
NI o O O R
o
I

then Blotto’s expectation is E = X’AY = X'H, or

217

I
%

4. GRAPHICAL REPRESENTATION OF MIXED STRATEGIES

It is possible to represent graphically the expectation of a player as a
function of his mixed strategies. If a player has two strategies, the graphical
representation is two-dimensional; for three strategies, the representation
requires three dimensions. For example, suppose we have the following
payoff matrix:

Red strategies

(2]
Bue O[5 1
strategies (@) 3 4

We can represent the various mixtures of Blue strategies @ and @ by
points on the line SiS; of unit length (Fig. 2). Thus @ represents § of ®
and 1 of @. If Red uses his strategy (1], then Blue’s expectations are given
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by ordinates PQ of the points P of AB corresponding to each of Blue’s
mixed strategies. Thus PQ = 4% is the expectation of Blue if he uses a
mixed strategy of 2 of @ and % of (@ and Red uses strategy [1].

A p L D

:'\:\5 Cr/‘:’,‘i

! | 4

o i3 31 L
Ficure 2 Ficure 3

If Blue uses strategy (@), then the expectation of Blue for each of Red’s
mixtures of and [Z] is given (Fig. 3) by the ordinates of CD. Thus
LM = 3% is the expectation of Blue if he uses strategy @ and Red uses
a mixture M consisting of § of [1] and 4 of [Z].

5. THE MINIMAX THEOREM

Having introduced mixed strategies, we now interpret a game with
payoff matrix A = (a;;) as consisting of Blue’s choosing & mixed strategy
X and Red’s choosing a mixed strategy Y. The payoff to Blue is the
expected payoff given by
(2.4) E=XAY = 3 T airy;

1

j=1i=
Although a player chooses the mixed strategy, the particular strategy
which eventually plays the game is chosen by chance, subject to the given
probability distribution.
Suppose Blue chooses his strategy by using a mixed strategy X. Then
he can expect to receive at least

mlin X'AY,
where the minimum is taken over all possible mixed strategies available to
Red. Now since Blue has the choice of X, he will select X so that this

minimum is as large as possible. Hence Blue can pick a mixzed strategy,
call it X*, which will guarantee him an expectation of at least

max min X’AY,
X Y
irrespective of what Red does. Similarly, for each mixed strategy, Y,
chosen by Red, the most he will have to pay to Blue is
max X'AY,
x
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where the maximum is taken over all mixed strategies available to Blue.
Now Red can choose Y so that the latter quantity is as small as possible.
Hence, Red can pick a mixed strategy, ¥*, which will make the expectation
of Blue at most
min max X'AY,
Y X

irrespective of what Blue does. It is apparent from the above remarks,
and it can be easily shown, that
(2.5) max min X’AY < min max X'AY.

x v Y X

The minimax theorem states that these two quantities always have a
common value, v, or that

(2.6) max min X’AY = min max X'AY = ».
X v Y X

This remarkable result is the fundamental theorem of game theory. We
shall prove this theorem in section 8.

6. OPTIMAL MIXED STRATEGIES

‘ From (2.6) it follows that Blue has a mixed strategy X* and Red has
a mixed strategy Y* such that

X¥AY > v forall Y,
(2.7) X'AY*<w for all X,
X¥AY* = 9,

The pair X*, Y* is called a solution of the game, and v, the value of the
game. We also refer to X*, Y* as optimal strategies since

(i) If Blue uses X*, his expectation is at least v, irrespective of what
Red does.

(ii) If Red uses Y*, he can make Blue’s expectation at most », ir-
respective of what Blue does.

Since X*AY > v for all Y and X’AY*< v for all X, the solution also
has the property that a player may announce, in advance of the play, the
mixed strategy to be employed, and the opponent will be unable to reduce
the expectation of the player as a result of this extra knowledge. Of course,
this announcement gives information only about the mixed strategy to be
employed. It does not give any information about the pure strategy which
will actually be used in playing the game. Neither player knows the partic-
ular pure strategy, since that is left to a chance device.

Thus, if Blue uses an optimal mixed strategy X* and Red knows this
in advance, Red need not shift from an optimal strategy Y* as a result of
the information. A similar argument applies to Blue.
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Ezample. In Example 4, the Colonel Blotto game, it can be verified by
(2.7) that an optimal mixed strategy X* of Colonel Blotto and Y* of the
enemy is given by

4
9
4 1§
9 1
X*=[0] Ty+=|15
4
k)
0 4
% 9

Colonel Blotto should pick strategies 1, 2, 5 at random with prob-
abilities §, 4, §, respectively. The enemy should pick strategies 1, 2, 3, 4
at random with probabilities ¢, 1%, &, %, respectively. The value of the
game is 4% to Blotto; i.e., Colonel Blotto, by playing optimally, can expect
to receive at least 4% regiments from the enemy. If Colonel Blotto uses
his optimal mixed strategy, then, no matter what the enemy does, Colonel
Blotto receives at least 4* regiments. If the enemy uses his optimal mixed
strategy, then Colonel Blotto may play any strategy except his third and
fourth and still receive 4 regiments.

7. GRAPHICAL REPRESENTATION OF MINIMAX THEOREM

If one player has two strategies and the other has any number of strat-
egies, it is possible to illustrate graphically, in two dimensions, the minimax
theorem and also solve the game. For example, if the payoff matrix is

Red
strategies -

Bl @[ E]
ue 5 1

strategies @ |3 4

the graph shown in Fig. 4 summarizes the expectation of Blue for various
mixed strategies of Blue and Red. The broken line AB represents Blue’s
expectation for each of his mixed strategies if Red uses pure strategy [1].

A
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~ ’
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Ficure 4
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The broken line CD represents Blue’s expectation for each of his mixed
strategies if Red uses strategy [2). The line A’B’ represents the payments
by Red for each of his mixed strategies, if Blue uses pure strategy @®. The
line C'D’ represents the payments by Red if Blue uses pure strategy ®.

The solid lines COB, therefore, represent the least that Blue can receive
for each of Red’s mixed strategies. It is apparent that Blue will pick the
maximum point of COB and Red will pick the minimum point of A'O'D’.
From the minimax theorem these two points are equal, and the value of
the game is OP = O’P’ = 3.4. The points P and P’ give the solution of
the game and correspond to

X* - [%], Y* - [% ]'
4 2
5 5

8. PROOF OF THE MINIMAX THEOREM

In this section we shall give a proof of the minimax theorem, the funda-
mental theorem of games of strategy. We shall prove that for any matrix
A = (ai;), we have that

n m n m
(2.8) max min ¥ 3 ai ry; = minmax X X au%Yi = U,
X Y j=1i=1 Y X j=li=1
where X and Y are the sets of probability distributions over Blue’s and
Red’s strategies, respectively. From this theorem it follows that every
finite zero-sum, two-person game has optimal mixed strategies.

There exist many proofs of this fundamental theorem. Some of the
proofs use fixed-point theorems; others are based on a separation theorem
of convex sets. Almost all these proofs are existence proofs—they prove
the existence of optimal strategies but are not constructive from the
viewpoint of practical computation.

We shall give an elementary proof of the minimax theorem which is
purely algebraic, requiring nothing more advanced than the notion of an
inverse of a matrix. At the same time, the proof will provide an efficient
method for computing optimal mixed strategies for both players.

First, let us derive a relationship that exists between the maximum
over mixed strategies and the maximum over pure strategies. Suppose
é1, b3, - . . , ém aTe m arbitrary numbers, and let X = (21, 2y - - -, Tm) DE
a mixed strategy of m pure strategies. Then for all ¢

¢: < Max ¢; = ¢,
where the max is taken over the m strategies. Multiplying by z: and
summing, we get
2 ¢ < max ¢ = ¢k
1 i

g
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or that

max 2 o < Max ¢; = ¢x.
X =1

Using the particular mixed strategy which assigns a probability of 1 to
the kth strategy, we have

max B o2 10+ dn 0. b b1 4. g0 0=

Hence it follows that
(2.9) m}?x 2 ¢iT; = Max ¢i.

i=1

Similarly, we have
(2.10) min Zn) ¢;y; = min ¢;.
Y j=1 J
Equivalent problem. Let I(X) and u(Y) be defined as follows:

I(X) = min 2 E A TyY; = mm E QT

. Y j=1i=1
u(Y) = Imax El 2 AixY; = max 2 a:ili.
j=1li=1
Then, from the definition of a maximum and minimum, we have the
following two inequalities:

'%1 aiix; > U(X) for all j,
_nEI aiy; < u(Y) for all 4.
i=

Now multiplying the first inequality by y; and summing over 7, and multi-
plying the second inequality by z; and summing over 7, we get
I(X) < uw(Y).
In terms of these variables, the minimax theorem states that
max [(X) = min u(Y).
X Y

Now suppose we can exhibit a pair of mixed strategies, X* and Y*,
with the property that
UX*) = w(¥™).
Then since
UX*) < max UX) < uw(Y™),

it follows that
(x* = m}?x I(x).
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Similarly,
u(Y*) = m;'n u(Y).

Therefore the minimax theorem is essentially a statement of the fol-
lowing equivalent problem: Find an m-component vector X* and an
n-component vector Y* whose components z; and y;, respectively, satisfy

the following seven conditions: .

L z; 20, 1=1,2,...,m;

I1. § ;= 1;

i=1 :

m
I11. l(X*) <3z 3%, .7 = 1: 2’ <y

i=1
(2.11) IV. y; >0, j=12...,n;

V. E Y; = 1;
j=1

VI % aiy; < u(Y*), 2=1,2,...,m;
i=1

VIL U(X*) = u(Y¥).
Our proof consists of constructing an X* and Y* satisfying the seven
relations above.
Basis. We begin the proof by defining the augmented matrix G of the
game matrix A = (a;;) as follows:

P, P, P, ... P, Puyy Puoz ... Pum
- 0 1 1 ... 1 0 o ... 0
-1 ai a2 e o Oin 1 0 0
-1 an ax ... a2 0o 1
2.12) G =
| —1 @Gni Gm2 ... Gun O 0o ... 1

This matrix has m + 1 rows and n + m 4 1 columns. Let us label the
initial row of G as ¢ = 0. Let us label the columns from left to right as
follows:

Po;P1,...,P,.;P"+1= U1,U2,...,Um=P7.+m,

where U; are vectors with 1 as the sth component and zeros elsewhere.
Further, let us assume that we have originally arranged the rows of 4
such that

(2.13) Um1 = MAaX .
i1<m
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Suppose we choose m -+ 1 columns of G. They determine an m + 1
square matrix B. We shall call B a basis if B satisfies the following
conditions:

B,. Py is included as the initial column of B;

Bs. B is nonsingular—i.e., B has an inverse, B~1;

B;. Each row of B, except possibly the initial row which we label as
¢ = 0, has its first nonzero component positive.

An example of a basis is the following matrix:

01 00 ... 0
—1 an 10 ... 0
-1 ay 0 1 0
0
(214) Bo=(Po,P1, U1,...,Um_1)=
| -1 am 0 0 ... O]

It is readily verified that B° is nonsingular and its inverse is given by

_a,,.l 0 0 —17
1 0 ... 0 O 0
b 1 ... 0 -1 gg
b, 0 ... 0 -1 !
(2.15) (B = | . .o =1 07
* 0
. - ... 0 . B
by O ... 1 —1]

where b; = a1 — ai. We can also express the inverse matrix in terms of
the row vectors R}. From (2.13) it follows that b; > 0; hence every row of
(B%~1, with the possible exception of ¢ = 0, has its first nonzero component
positive. .

Ordering of vectors. Condition B; in the definition of a basis can be ex-
pressed as a comparison of vectors with the null vector. Later in the proof
we shall find it convenient to compare two arbitrary vectors—i.e., given
two vectors which are different, we wish a rule for selecting, say, the larger
vector. We do this by defining a suitable ordering relationship among
vectors.

First, let us define equality of vectors. Two vectors 4 = (a;) and
B = (b;) are equal if and only if a; ~ b; = 0 for every 7. That is, 4 is equal
to B (written A = B) if and only if the vector (4 — B) is the null vector,
0. Now suppose the two vectors A and B are not equal, then the vector
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(A — B) contains at least one nonzero component. If the first nonzero
component of (A4 — B) is positive, then we shall say A is greater than B,
and write A > B. If the first nonzero component of (4 — B) is negative,
then A is smaller than B and we write 4 < B.

If the rows of the inverse of a basis B are denoted by Ry, By, . . ., B,
then the condition B; defining a basis states
(2.16) R: > 0, i=1,2...,m

From the above method of ordering it follows that the minimum vector
of a series of vectors is that vector whose first component is least; if there
is a tie, then one compares the second components of the tying vectors, ete.

Optimal basis. Let
B = (Py, Py, P;,, ..., P;.)
be a basis whose inverse is

Ry
Ry

Bl = : = (Co, Cl, ceey Cm),
R,
where the R’s are row vectors and the C’s are column vectors. Then from

the fact that
BB =1,

where I is the unit matrix, it follows that
RkPj,- =0 for 7 5 k,
RP;,=1 i=k=0,1,2,...,m,

where j, = 0.
In particular, we have

(217) ROP'i =0 for ji = j17 j2) LECE ,jm-
Now suppose we form the n 4 m scalar products
RoP,‘, j=1,2,...,n+m.

From (2.17) it follows that at least m of these products will be zero. If the
remaining n scalar products are no larger than zero, then we shall call B
an optimal basis. As will be shown, an optimal basis yiclds optimal mixed
strategies of the players. In other words, if the basis B is such that
RP; L0, i=12,...,n+m,

then B is an optimal basis.

Optimal strategies. Let B be an optimal basis. Let the components of
the 0-row and 0-column of B! be denoted as follows:
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(218) Ro = (l, -, —%, ..., —xm),

(219) Co = (u; Yiy Yjny » « - 7yjm)-
We shall show that an optimal mixed strategy X* for Blue is obtained
from the row R, by setting

X* = (21,22, . . ., Tm).
An optimal mixed strategy Y* = (y1, ¥2, . . . , y») for Red is obtained from
the column C, by setting ,
Yi = Ui for j: < n,
=0 for all other j.

We shall prove that X* and Y* are optimal mixed strategies of the
original game by showing that X* and Y* as defined above satisfy the
seven conditions I-VII of (2.11).

Suppose we have an optimal basis; let us form the products RoP; for
different values of j. ,

If j = 0, we have

1 = RPy = _§1 HaA

hence condition II is satisfied.
If 1 £j <mn, we have

0> RP;=1— _§1 a5z,

which satisfies condition III.
Ifn4+1<j<n-+4m wehave

OZRon=RoUi=—x,' fOl‘lSiSm,
hence condition I is satisfied.
Now since B is a basis, we have
R, >0, 1=1,2...,m.

In particular the first component of each R; is non-negative. But from
(2.17) the first component of each R; is y;,. Hence IV is satisfied.
Since BB~! = I, we have in particular that

BC, = U..

From this matrix equation we get m + 1 linear equations in the m 4 1
variables (4, ¥, Yi, - + - , Ysm). Lhe first of these equations is

Ji
since the first component of each P;, is 1 for 1 < j; < n and 0 otherwise.
Hence V is satisfied. Now the remaining m equations may be written as
follows: '

Y= 2 yi=1,
<n i=1
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~u+ T apypt+ 2 %uyn =0, i=1,2...,m,
Je<n x>n

where §; > 0. It follows that

n
‘EIa;,’y,-Su, t=1,2...,m
5=

and VI is satisfied. Finally VII is satisfied since u and [ are both defined by
the same element of B~

Constructing an optimal basis. The problem of finding optimal strategies
has now been reduced to the problem of constructing an optimal basis.
The inverse of such a basis will yield optimal strategies. We shall now
describe an iterative procedure for constructing an optimal basis and its
inverse.

The iterative procedure starts with some basis, for example B° as de-
fined in (2.14). If B®is not optimal then we construct from B° a new basis,
B!, which differs from B® by only one column. Further, if Ry is the Oth
row of (BY)~, the inverse of B!, then R} will have the property that

(2.20) RS > Rj.

If B! is not optimal, then we iterate the preceding algorithm for B, etc.

This process generates a sequence of bases. From (2.20) it follows that
no basis can be repeated. Further, the number of bases cannot exceed the
number of ways of choosing m columns out of » + m columns of the aug-
mented matrix ¢. However, we shall terminate the process when we have
arrived at an optimal basis, which is always possible, as will be shown.

Suppose the basis B° is not optimal, then there exists some P; in ¢ such
that R P; > 0. To construct B! from B° we let P, replace a column of
B, where P, is determined by the condition

(2.21) RYP, = max R3P; > 0, i=L2 ..., 4+ m
M

In case the choice of P, is not unique, then choose P, with the smallest
index.

Next compute the column vector V = (vo, 1, . . ., vn) satisfying the
equation BV = P,. Hence we have
(2.22) v; = R{P,, i=0,1,...,m

In particular, we have
P = RSP s > 0

Further, »; > 0 for some other ¢ # 0. For, if we assume the contrary,
. namely that v; < 0 (¢ % 0), then from the relationship

P, = BV = v,Py + ‘% Uin,-,
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it follows that
1

Py, = —P - Z P,
i=10p
Hence the column P, can be written as a positive linear combination of m +1
columns of G@. From the definition of G, it is clear P; cannot be written as
a positive linear combination of the other columns, and so we have a
contradiction.

We now choose to drop from B° that column P;, such that

RO RO
(2.23) min —j = forv; > 0,v, > 0,% 0.
From the above it follows that
(2.24) B} — 2R > 0 for v; > 0.

We have constructed B! from B® by dropping from B° column P;, and
adding column- P;, as defined above. We need to show that B! is a basis.
We shall do this by constructing [B]~! from [B°]~.

Let the rows of [B!]~! be designated by R} for7 = 0,1, 2, ..., m. We
shall now verify that we can get R{ from R{ and v; by letting

Rl =R — %R for i 5 r,
(2.25) Ur
R =1po
Ur

Using [B']~! as defined by (2.25) we shall verify that [B!]~'B' = I. First,
if 2 #randyj; #s,

RiP;, = R§P;, — * R%P;, = 0 for 5 = F,

RiP;, = RYP;, — ’;—"' RP,=1—-0=1 fori=FL.
Second, if ¢ > r and j; = s, we have

1P, = ROP, ——R"P =p; — —0, =

r

Thirdly, if ¢ = r and j; # s, we have
RIP;, = le‘:P,-,. ~0.

Finally, if 7 = r and 7; = s, we have

0
RIP, = ILP y = 1.

T

Therefore (2.25) yields the inverse of the matrix B
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In order to complete the proof that B is a basis, we need to show that
Rl >0fori=1,2,...,m Now fori =r, we have B? > 0 and v, > 0.
Hence

R: = ;—:R‘} > 0.
If ¢ 5 r, and if v; < 0, then
Bl =R} — 2R} > 0.
If ¢ 5% r, and if »; > 0, then from (2.24) we have

Rl = R — 2Ry > 0.

Therefore B! is a basis.

Finally, we need to show that no basis can be repeated in this process.
It is sufficient that (2.20) is satisfied, or that R < RJ. This follows from
the fact that R) is a row of a nonsingular matrix and hence must possess
at least one nonzero component, the first of which must be positive. Since
v > 0 and v, > 0, we have that

Ry = RS — R < RS,
Note that if P;, is a column removed from B°, then we have
RiP;, = R3P;, — " RIP;, = 0 — 2 < 0.
We also have
for (7 =JuJ2 - 3 S e, fm)-

Thus at least m + 1 columns of the m -+ n columns now have the property
RiP; < 0. This compares with at least m columns having this property
in the previous stage. Further, on the next iteration this P;, cannot return
to a basis since a candidate s for the basis must satisfy RoP, > 0. This
completes the verification.

ExampLE 8. A Guessing GAME.

Let us apply the computational method to the following game: Blue
secretly picks one of three numbers 1, 2, 3. Red then proceeds to guess the
number picked by announcing his guess. Each time Red announces his
guess, Blue answers “high,” “low,” or “correct,” as the case may be.
The game continues until Red has guessed correctly. The payoff to Blue
is the number of guesses required by Red to identify the number.

A strategy for Blue is the choice of a number 1, 2, or 3. A strategy for
Red may be represented by a triplet (G; H, L) where G is the number
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guessed the first round, H is the number guessed the second round if Red
hears “high,” and L is the number guessed the second round if Red hears
“low.” It is clear that the game can be terminated in two rounds. Thus
Red has five strategies,

. (1;0,2),(1;0,3),(2; 1, 3), 3; 1, 0), (3;2,0),
where 0 means “not applicable.”

The payoff to Blue is the number of guesses required by Red to get a
“correct”’ response from Blue. The payoff matrix is the following:

GuessiING GaME PAYOFF

Red’s choices
(102) (103) (213) (310) (320)

T ! 1 2 2 3
’i(’)’f” 2| 2 3 1 3 2
chowees ol 3 2 2 1 1

The augmented matrix associated with this game is given below:

Py Py P, Ps Py Ps Ps Pr Ps

0 1 1 1 1 1 O 0 O
Q= -1 1 1 2 2 3 1 0 O
-1 2 3 1 3 2 0 1 0
-1 3 2 2 1 1 0 o0 1
First dteration. The initial basis B° consists of (P,, P1, Ps, P1), or
0100
-1 110
0 _—
B = -1 2 0 1°
-1 3 00

The inverse of B°, or (B!, is computed from (2.15):

300 —1 R}

100 O R?
0N—1 . —
BY" =19 1 0 —1|7 R

1 01 -1 R3
Using this inverse, we compute RJP; for all j > 0. We find that
max RgP, = R8P4 = 2.

i#0
Therefore P, replaces some column in B°. To determine the column to be
dropped, we first compute the vector V = (v) where v; = R{Ps.
Substituting, we get

V=2 wv=1 v=3 v=23
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Next we obtain

min — =
v >0 Vs
1#0

R} R}
3’

hence P; is dropped from the basis.
Second iteration. The next basis B! is
Bl = (Po,Pl,Pe,P4).
To get its inverse we set

R}:Rf—’fzeg for ¢ = 3,
3
R =1R
Us
We then get ;
RS 5 0 -3 —3%
Ri 10 -3 %
N-1 =
(BY) R} 1 1 -1 0
R} 30 3§ -3

After computing RiP; for all 7 # 0 we find that

max RiP; = RiP; = 1.
7#0

Therefore P; replaces some column in B!. The new vector V can now be
computed. Its components are
Uo=]., 1/'1=1, l)2=2, T)3=O.

Using these values, we find

. 1 2
min = = =2,
2:>0 Vi 2
120

Hence P; is dropped from B2 v
Third iteration. We have B? = (P, Py, Ps, Py). The inverse of B?
will be

11 3 1 .2
6 ® 6 ®
T
2y—1 .. .
(B ) - 3 3 3 0
€ € )
2 2 —_—2
€ 0 2 -2
Using this inverse, we compute that
max R3P; = RiP; = &,
350
1
=g V1=% V2= —§ U= %
2
. R} R}
min — = e
v >0 Ut [}
170
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Fourth dteration. We have B% = (P, Py, P;, Ps) and

3
3% —3% 5% —3% Ry
1 —3 1 2 R3
(B! = 5 3 ) X 1
| as 6 12 6 r2I
EL) 30 30 30 g
—18
36 %6 30 TG R
We find that
R3P; <0 for all 7 = 0.

Therefore a solution to the game has been obtained. The optimal strategies
are X* = (%, 1, 2), obtained from the top row of (B%)~!and Y* = (0, {, §,
4, 0), obtained from the first column of (B®)~L The value of the game,
obtained from the upper left corner, is &.



PROPERTIES OF
OPTIMAL STRATEGIES

1. MANY OPTIMAL STRATEGIES

From the minimax theorem it follows that every finite game has a so-
lution in mixed strategies. In some cases, depending on the payoff matrix,
the game may have many solutions. In this chapter we study the properties
of this set of solutions. We shall first examine some properties of an op-
timal strategy and then analyze the properties of the set of optimal
strategies.

2. SOME PROPERTIES OF AN OPTIMAL STRATEGY

Suppose X* = (z3) and Y* = (y;) are optimal strategies of Blue and
Red, respectively. If i > 0, then strategy ¢ may be played, depending on
the outcome of the randomization. If z; = 0, then strategy ¢ is not played.

Let

u I
us [N
U= AY*=| " | L*=AX*=
T L
Thus
U* = (uy) = (,21 aiy3)
pin

is a vector whose components represent Blue’s expectation if he uses a pure
36
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strategy 7 and Red uses an optimal strategy Y*. Similarly, the components
of

L*=(@0) = (Z aiiT1)
o
represent Blue’s expectation if he uses an optimal mixed strategy X* and
Red uses a pure strategy j.
From the minimax theorem we have

n n
3.1) max 3 ayy; = min 3 a2 = 0.
: i g=1 i oi=1
Hence we have

(i) max u; = min [; = ». There exists at least one pure strategy for
eajch player]which, if used against his opponent’s optimal mixed
strategy, yields the value of the game.

From (3.1) we also get
(i) u; < v < T for all 7 and j. Against an opponent’s optimal mixed

strategy a pure strategy cannot yield a higher expected payoff than
his optimal mixed strategy.

Since u; < v for all ¢, let us designate by S; the set of Blue strategies
for which } < v, and by S, the set of Blue strategies for which u = v.
Then, by the minimax theorem, we have

m
v= 3 uy =032+ T wz
t=1 Sz S1
or (1 — 3 x) = 3 urh.
Sa
Now from the definition of 8; and Se, it follows that
1 -3z, =3
Sz S
Hence we get
v 3T = 2 U
St S
or
(3.2) :/SE‘ v — upai = 0.
Since v — u, > 0 for every 3 in S, it follows from (3.2) that z% = O for
every 7 in S;. We have shown that

(iii) If w; <v, then z§ = 0. A player’s optimal mixed strategy con-
tains no pure strategy which yields less than the value of the game
when that pure strategy is used against an opponent’s optimal
mixed strategy.
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Since 23 > 0 for all 7, we can express the game value v as follows:

m
* ¥ » ok
V=3 wiTi = 23 Ul
i=1 z* >0
* ¥ X *
= 2 wT+ 2 Ui
z* >0 x* >0 .
u*=p u*<v

Hence
v =0T+ T U,
Rs B
where R represents the set of Blue strategies for which z; > 0 and u; < v,
and R, is the set of Blue strategies for which z; > 0 and u; = v. But since
Su+2a=1,
R R

we get
v x; = 3 U
Ry R
Therefore

=W — u)zy = 0.
R

Since we have assumed 2 > 0, and v — u; > 0 for each ¢ in R, it
follows that R, is vacuous. We have
@iv) If 23 > 0 then w; = v. If a pure strategy is a member of an opti-
mal mixed strategy it yields the value of the game when used
against an opponent’s optimal mixed strategy.

Example. For the Colonel Blotto game (Example 4) we have the payoff
matrix

0
4

2

1

-1 3 0}

1 0 3 J

-2 2 2

for which the value of the game is v = 4 to Blotto. The following vectors
can be readily verified.

S
i
|1
O = = O

4 14

9 9 T% ‘19_4

4 1

; g 15 3

* * | 12 f -~ L

Xr =0 Ur =22 h o= 05 ) Lr = |

0 12 o

4 1
1 14 9 ‘§4‘
9 L9

Note that uf = 32 < 1% = and 23 = 0; also, uf = 42 < 4t = v and
x; = 0.
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3. CONVEX SET OF OPTIMAL STRATEGIES

Suppose a player has more than one optimal strategy. Let z} and z3$ be
two optimal mixed strategies of Blue. If v is the value of the game, then
from the property of an optimal strategy

XYAY >v and X§AY 2> forall Y.

Let A be an arbitrary number such that 0 < A < 1. Then we have
AXYAY 4+ (1 — NXYAY >0 for all Y.
Thus
3.3) XY 4+ (1 —NXYIAY > v for all Y.

Hence, for every value of A, the mixed strategy [AX{ + (1 — M) X%], which
is a convex linear combination of X} and X3, is also an optimal strategy
for Blue. Since A was arbitrary, it follows that if a player has more than
one optimal strategy, he has an infinite number of optimal strategies. This
infinite set of optimal strategies satisfying (3.3) is called a convex set. A
similar argument may be applied to Red’s strategies.

Let T be the set of optimal strategies for Blue and T the set of opti-
mal strategies for Red. Then T; and T, are convex sets. It follows that
every member of T is a convex linear combination of certain points K(T1)
of the set T:. Thus we may describe T'; by describing all members of K(74).
. It will turn out that K(T,) is a finite set.

4. OPERATIONS ON GAMES

There are several operations one may perform on the payoff matrix
without altering the set of optimal strategies of a game. These operations
are sometimes useful in solving games with a large number of strategies.

Permuting. A permutation of the rows or columns of a payoff matrix
permutes the components of the solution and does not alter the value of
the game. We can also permute the players by solving the game whose
payoff matrix is the negative transpose, —A’, of the payoff matrix 4.

Addition of and multiplication by constant. If a constant, ¢, is added to
each element of the payoff matrix which has a game value, v, then the
value of the new game is v 4 ¢. It is clear that the sets of solutions are
the same for both games.

If every element of A is multiplied by a positive number ¢, then the
new game has a value cv. Again, the set of solutions is unchanged.
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5. DOMINATED STRATEGIES

Let us define a poor strategy of a player as some pure strategy which
appears with zero probability in every optimal mixed strategy of that
player. That is, we shall say Blue’s kth pure strategy is poor if we have
7 = 0 in every Blue optimal mixed strategy X* = (z}).

If T is Blue’s set of optimal mixed strategies, then k& is a poor strategy
if for every member of 7' we have 2§ = 0. Since a poor strategy never ap-
pears with positive probability in any optimal mixed strategy, it will never
be played. Knowing the poor strategies, if any, we can reduce the size of
the game by the number of poor strategies.

One method of examining a game for poor strategies is to examine the
payoff matrix for dominances. Suppose that the payoff matrix A = (as;)
is such that

(3.4) ai; > axj forj=1,2,...,n,

or that row ¢ dominates strictly row k. Then we say that strategy & of
Blue is dominated by strategy 7, or k is a dominated strategy. However,
for Red, if column r dominates strictly column s, i.e., if

(3.5) Qir > Qi fori =1,2,...,m,

then strategy r is dominated by strategy s.
Let us assume that for Blue strategy k is dominated by strategy 7, or

ar; < @i forj=1,2,...,n.
Then if Y* = (y%) is an optimal strategy for Red, we have
ut = él arys < jélaify’j =uj <o,
or ug <.
It follows that for any X* in T,

zi = 0.

Hence strategy k is a poor strategy. Similarly, we can show that if (3.5)
is satisfied, then strategy r is a poor strategy for Red. We have thus
shown that

(i) If a strategy is dominated by another strategy, the dominated
strategy is a poor strategy.

k Suppose that there exist pure strategies k, I, and r and a number
A0 < A < 1) such that

(3.6) ar; < Ay + (1 — Nay; forj=1,2,...,n.
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That is, suppose strategy k is dominated by a convex linear combination
of strategies I and r. Then for any Y* we get

W =Zayl <AZayt+ (1 —NZay) =M+ (1 — Mun

But u<v and ur <v.
Hence ut <M+ (1 — Ny =0
Again, this implies that for any X* in T},

z: = 0,

or the kth strategy is a poor strategy. We have thus shown that

(ii) If a strategy is dominated by a convex linear combination of
other strategies, the dominated strategy is a poor strategy.

Now suppose a convex linear combination of strategies k and [ is.dom-
inated by a convex linear combination of strategies r and s—i.e., suppose
there exist A and p where 0 <A < 1and 0 < p < 1, such that
B.7) Aag; + (1 — Nay < pay; + (1 — plas; forj=1,2,...,n.
Multiplying (3.7) by %3 and summing over all j, we get

AMZayi+ (1 =N 2oyl <wZayi + 1 — N Zayl
Hence
(3.8) Mg 4 (1= N < pur 4+ (1 — pus <o
Now ut < vand uf <wv. If uf = vand u} = v, then from (3.8) we get the

contradiction » < v. Hence either uf < v or 1} < v. Therefore, either
zt = 0 or z¥ = 0. We have shown that

(iii) If a convex linear combination of strategies is dominated by a
convex linear combination of other strategies, then there exists
at least one poor strategy among the dominated convex combina-
tion of strategies.

Finally, suppose that the payoff matrix A can be decomposed into four
submatrices A, Az, Az, A4 as follows:

_ T4 Az]
A= [ el
where the submatrices A; and A; have the following properties:

(a) Each column of A; dominates strictly some column of A;.'

(3.9) (b) Each row of A; is dominated strictly by some row of A;.

Let X%, Y be a solution of the game having 4, as the payoff matrix. Then
it is readily verified that the pair of full vectors X* = (X%1,0,...,0),
Y* = (Y1,0,...,0) is a solution of the original game A. Thus Blue has
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optimal mixed strategies which mix only those strategies associated with
A,, and Red has similar optimal strategies. We shall now show that these
are the only optimal strategies. If Blue has an optimal mixed strategy
which contains a pure strategy k determining As, then 23 > 0. Therefore
for any optimal Red strategy Y*

uf = v.
But if Y* = (¥1,0,...,0), it follows from the dominance assumption
that

uy < v,

a contradiction to the optimality assumption. Therefore, in every optimal
strategy, «} = O for all & determining A;. Thus all Blue’s strategies which
determine 4; are poor strategies. Similarly the Red strategies which deter-
mine A, are poor strategies. It is interesting to note that these conclusions
are independent of A,. We have shown that

(iv) If the payoff matrix A can be decomposed in such a way that
(3.9) is satisfied, then all the solutions of A are obtained by solving
Ay The remaining strategies are poor strategies.

6. ALL STRATEGIES ACTIVE

We have seen that for any game the expectation of Blue is at most v, the
value of the game, if he uses a pure strategy and Red uses an optimal mixed
strategy. Similarly, the least that Red can expect to pay Blue is v if Red
uses a pure strategy and Blue uses an optimal mixed strategy. Further,
each player has at least one pure strategy, which, if used against an oppo-
nent’s optimal mixed strategy, yields exactly v to Blue. Now it may hap-
pen that the game matrix is such that every pure strategy, if used against
an opponent’s optimal mixed strategy, yields exactly v to Blue. In such a
case we say all strategies are active in this game. This notion will be useful
for describing the extreme points of the convex set of optimal strategies.

Define J, to be a row vector which has n elements, each of which is 1;
thus

Je=(1,1,1,1).
Now, if X*, Y* is a solution of the game having an n X n payoff matrix
A, then all strategies are active if

(3.10) U* = AY* =vJ;, and L* = A’X* = v/
Suppose the payoff matrix is #n X n and nonsingular. If all strategies

are active in this game, then the solution is readily obtained. Using (3.10)
and solving for X* and Y* we have

(3.11) X* = 9(A)L, Y = A=
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Since X* and Y* are probability distributions, we have
JX* =J,Y* = 1.
Substituting in (3.11) we get

1 1
VT TL@ANTL T TATL
(3.12) )
= AN .
T WAL T J. AL

Thus, if all strategies are active in a square nonsingular payoff matrix,
the solution of the game can be obtained from (3.12). Conversely, if the
components of X* and Y* in (3.12) are non-negative, then X*, Y* is a
solution of the game.

Now if 4 is an n X n nonsingular matrix, then

All A—21 CRCERS Anl
DA_I — A12 A22 .. Aﬂz = H,
Aln A‘l'n Y Arm

where D is the determinant of 4 and A;; is the cofactor of the element a;;
in A. Recall that H = DA~ is the adjoint of A.
We can express (3.12) in terms of the adjoint matrix as follows:

y = D determinant of A
S A; sum of all elements of adjoint matrix’
.
Aji . .
o = _ row-sum of elements of adjoint matrix

z

i=1
N Z Ayu ~ “sum of all elements of adjoint matrix ’

2%

z

. _ ¢_1Aﬁ __column-sum of elements of adjoint matrix
Yi A sum of all elements of adjoint matrix

7. OPTIMAL STRATEGIES AS EXTREME POINTS

We have shown that if the payoff matrix is nonsingular and all strat-
egies are active, then the optimal strategies X*, Y* and value of game are
given by (3.12). Hence X* is an element of T, and Y* is an element of T,
where T; and 7', are the convex sets of optimal strategies of Blue and Red,
respectively. However, the X* and Y* given by (3.12) are special points
of T, and T,. We shall show that they are extreme points of the convex
sets T, and T, respectively.
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Suppose that X*, which is given by (3.12), is not an extreme point of
T.. Then we can write
*= X, 4+ (1 — NX,,

where X; and X are extreme elements of 7. Since X, and X, are optimal,
it follows that
(3.13) A'Xy > o]y,
(3.14) A'X,y > vl
It follows that
MX + A —-NAX,=ADX:+ (1 —NX,] = AX* =],

From (3.13) we have that each component of the vector 4'X, is larger
than or equal to v. Suppose that some component of X; were actually
larger than »; then correspondingly A’X* > » for the same component.
This is impossible since we have assumed A’X* = v/, Therefore
A’Xy = vJ,. Similarly, A'X, = vJ,.

We have thus shown that

A'(X, — Xy) = OJs.
Since A’ is nonsingular, this implies X; = X,. Hence
X* = >\X1 + (1 _ )\)XQ = Xl,

or X* is an extreme point of 7.

8. EXTREME POINT WHICH YIELDS SUBMATRIX

Suppose the payoff matrix 4 is such that there exists a nonsingular
r X r submatrix B for which all strategies are active. Then for the sub-
game B the game value, v,, and optimal strategies, X7, Y7, are given by

_ 1
= IB
J. B!
* _ YT
(3.15) Xr = J,—B—IJ;,
o LB
¥y = J.B~J;

Since the problem of solving a game is not affected by interchanging rows
or columns, we can suppose without loss of generality that B is situated in
the upper left-hand corner of A4, i.e.,

any G2 ... Qi
B=

ar1 Qrz oo Qrr
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Let X}’ = (zf, 23, . . ., 2¥) be an optimal strategy of B which is given
by (3.15). Now suppose that

X* = (a%, 2%,...,250,0,...,0)

is an optimal strategy in the game with payoff matrix A. We shall show
that X* is an extreme point of 7h. For if we suppose the contrary, then
there are distinct strategies U = (uy, . . ., Un) and W = (wy, . . ., wn) of
T, such that

X*=2U+ (1 —NW, 0<x<1.
In terms of the components of the vectors, we have
(3.16) =M+ A —-Nw;, ¢=1,2...,m

But
i =0, t=r+1,r4+2...,m
It follows that
U = w; = 0, t=r+4+1Lr42...,m
Therefore

T m
'21 @iU; = '21 iU, J=12...,n
i=

1=

Since U is optimal, we have

% Qi 2> 0, Jj=1,2,...,n
And hence T
(3.17) ‘él agus > v, i=12...,n
Similarly, we conclude that
(3.18) 3 agws >0, i=12...,n
From (3.15) we have =
XiB = gy = vl
hence 1_éla.-,-ac}‘ =y, i=12...,r
Making use of (3.16), we have
(3.19) A élaijui + (1 =) élaﬁwi =, i=12...,r
From (3.17) and (3.18) and using (3.19), it follows that
iz‘; a;u; = iz;a,-;wi =9, Jj=12...,r

Hence
U,B = W;B,
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which implies
(U, — W)B = 0.

Since we have supposed that U and W are distinct vectors, it follows that
B is a singular matrix, contrary to hypothesis.

We have therefore shown that an optimal strategy associated with a
nonsingular submatrix is an extreme point of 7’1

9. SUBMATRIX WHICH YIELDS EXTREME POINTS

We shall now show that if X* and Y* are extreme points of T and T,
respectively, then there exists a nonsingular submatrix B of A such that

-1

v = 7B

© J.B! ,

(3:20) X' =7 BT
o JB7Y
e =g

where 7 is the order of B, X; is the vector obtained from X* by deleting
elements corresponding to the rows deleted to obtain B from A4, and
similarly for Y7.

To prove this we shall take a pair of extreme points, X*, Y*, and con-
struct a nonsingular submatrix B satisfying (3.20). For convenience, we
shall assume that v # 0.

First, relabel the rows and columns of A, by using the components of
X* and Y*, as follows:

xy > 0, 1<i<m;
x; = 0, m +1<i<m;
y; > 0, 1<j<n;
Y; =0, n+1<j< n

Now arrange the rows and columns corresponding to 73 = 0 and y; = 0

as follows: /

3 agy; =, m +1<¢<m’;
Jj=1
n * -
Z aiy; <v, m’'+1<i<m
i=1
m . .
T ai4x; =, n—+1<j<n";
i=1
m * .
Z aiTy > 0, n'+1<j<n
i=
Define the vectors D, and C; as follows:
DJ' = (a1i7 A2y« - -, a’m'j)i 1 S] S n";
Ci = (aa, Qi . « -, i), 1 << m"”
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Now arrange the columns of the matrix for which ' +1 <j < n” in
such a way that Duyi1, Dpye, ..., D, are linearly independent of
D,D,...,D; and D,,,...,Dy are linearly dependent on D,
Ds, ..., D, That is, we find some number ¢ such that n’ + 1 <t < n”
and such that there do not exist numbers Ay, N, . . ., A, satisfying
Dj = )\1D1 + >\2D2 + PR + )\j_.le_.l + )\j+1Dj+1 + oot )\th,
n4+1<i<y,
and there do exist numbers Ay, Ny, . . ., A satisfying
Dj=>\1D1+)\2D2+...+>\;Dt, t+1§j§n".

Similarly, arrange the rows of the matrix for which m’ + 1 < ¢ < m”

in such a way that Cum41, Cwte, . .., C,s are linearly independent of
C,Cs...,C and Copy, Coys, ..., Cn» are linearly dependent on
C,Cy...,C,wherem' + 1 < s <m”. That is, we can find a number s

such that if m' + 1 < ¢ < s, there do not exist numbers py, po, . . ., s
so that

(321) Ci=mCi+ uwle+ ...+ piaCin + piiCinn + . . . + 0,
and if s + 1 < ¢ < m”, there do exist u, po, . . ., g such that
(3.22) Ci=wmCr+ pCe + ... + uCh

We may represent the preceding decomposition of the m X n matrix as
shown in Fig. 5.

_Indep D's . Depl's
|
n' gt ’l" n
I 1
!
m' |
Indep C's | v
|
P U S ——
Dep C's i
o ,
<y
m
F
v >

Ficure 5
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We shall now show that the s X ¢ matrix

(2501 a12 ce. Qug

gy A5 oo Qg

is nonsingular. Define the vectors
B; = (a,-l, Ai2y o o o ,a,-t), 1 S z <s.

Then, if B is singular, we must have dependence among rows or columns.
Let us assume the dependence among rows. Then there exist constants ¢;,
not all zero, such that

(323) ClBl + Csz + PPN + C,Bs = O

Suppose ¢; # 0 for some ¢ where m’ + 1 < i < s. Then we may divide
(3.23) by ¢; and write

Bi=aBi+aB:+ ...+ aiuBig + ayiBiyi + . . . + a,B..
In particular, we have
Ci=alCi+ aCe+ ... + aC,,

which contradicts the assumption of independence of C;form’ 4+ 1 <7 < s.
Henceec; =0form' +1 <7< s
Thus (3.23) becomes

aBi+ B+ ...+ cwBw = 0,

ml
or > c,a;,-=0, 1S]St.
i=1
Now, since n’ + 1 <t < n’” we have
t
T agyi=v for1 <i<m.
j=1

Multiplying by ¢;, we get

Summing over z, we have

t m . m’
Z Zeagy; =v X ¢,
i=li=1 i=1
ml
or 0=9v 2 c..
i=1

Since v # 0, it follows that
(3.24) §m=a

i
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Now define the following m component vectors,
. .
Xe = (@l ‘e,z + €3, ..., Tw + €Cm, 0,...,0),
*
X_o= (21 — 1,25 — €3y . . ., Ty — €m, 0, ..., 0),

where e is arbitrary and c; satisfies (3.24). Then we can find an e such that

Ty + ec; > 0, 1 <2< m
2 — ec; > 0, 1<{<m.
Hence
m . m m m
T @te)=ZSai+eTei=1+eT =1,
i=1 : i=1 =1 i=1

,

m m
El(ﬂ?‘i b ec,;) =1 —ce ‘El Cc; = 1.

Therefore X. and X_. are mixed strategies for Blue.
Now for all 7, we have

m
21 a;(; £ ) = T aixi > 0.
i= i=1

Therefore X, and X_. are optimal strategies for Blue. But
X* = %(Xe + X—e)y

which contradicts the assumption that X* is an extreme point of T1. Hence
B is nonsingular. This implies that B is a square matrix, or s = . Further,
it is clear from our construction of s and ¢ that for the B matrix all strat-
egies are active. Therefore, (3.20) will hold for the B matrix.

10. DETERMINING THE SETS OF OPTIMAL STRATEGIES

The sets of optimal strategies, T for Blue and T for Red, are convex
sets. Hence they are determined by the extreme points of the sets. Now
for each pair of extreme points, one from 7T; and one from T, there is a
nonsingular submatrix whose solution has all strategies active. Further,
every nonsingular submatrix, whose solution has all strategies active and
which is also a solution of the original matrix, determines a pair of extreme
points of T; and T,. Since there are only a finite number of submatrices
in each matrix, it follows that there are only a finite number of extreme
points of T, and T. Therefore the sets T1 and T are polyhedral sets
spanned by a finite number of vertices.

We can find all the extreme points of Ty and T. by examining all the
submatrices of the payoff matrix.
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Ezample. Let us determine the sets of optimal strategies T and T for
the following game:
3 5 3
A=14 -3 21
3 2 3

First, we test for strict dominance to see if there are any poor strategies
in this game. We find no strict dominance, although there are several
instances of nonstrict dominance.

To obtain all the extreme points of 77 and T: we examine all square
submatrices that can be formed. There are nine 1 X 1 submatrices, nine
2 X 2 submatrices, and one 3 X 3 matrix. Examining 1 X 1 submatrices is
equivalent to testing A for saddle-points. We find a saddle-point at ¢ = 1,
J = 3. Therefore (1,0, 0) is an extreme point of 7; and (0,0, 1) is an
extreme point of T The corresponding nonsingular submatrix is (3).

Of the nine 2 X 2 submatrices, the following three,

-3 2]’ 5 3:| 4 ——3]’
2 3 -3 2f 3 2
exhibit strict dominance and therefore cannot have all strategies active.

The matrix
[ :I
3 3

is singular and hence need not be considered. For each of the remaining
five matrices,

2} [s s [ 2d 520 [ 5

all strategies are active. Their solutions can be computed by inverting the
corresponding matrices. For example, to solve the second matrix of the
five, we have the following computations:

_[4 2}, g1 38 —2] ,__1 _6_
B‘[s 3]’ B “6[-3 4]’ v= =2~ 3

S R

e B R

If we test (0,0, 1), (3,0, %) for a solution of the original game A, we find
3 3
max '21 a;y; = 3, min ¥ a;1; = 2.
i = ] P
Therefore (0,0,1), (3,0,3) is not a solution of A. Of the five 2 X 2
matrices we find that the two matrices,
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5] [i3]
2 3 4 2
yield solutions which are also solutions of the game. They are, respectively,
(30,3, (0,0,1);
(1,0,0), (30,3%).
Finally, the 3 X 3 full matrix must be tested for a solution. We have:

3 5 3 1 -13 -9 19
A=|4 -3 ’ Al = T —6 0 6 [
3 2 3 17 9 =29

1
VA~ = I:

T AU
%
] = Y* (A~ = O:I = X*,
3
Thus the 3 X 3 matrix yields an extreme point. But it is identical to one
of the extreme points previously determined in a 2 X 2 submatrix. There-
fore T, is the line joining (1,0,0) and (%, 0, %). T is the line joining
0,0, 1) and (3, 0, 3). Every optimal strategy of Blue can be expressed by

—18
v =% =3,

Wik O rol

a(17 0, 0) + (1 - a)(%; 0, %), 0<a< 1.
Every optimal strategy of Red can be expressed by

11. GEOMETRY OF SOLUTIONS

We have described the properties of each optimal strategy. We also
have described how to construct the set of optimal strategies, which is a
convex set. In this section we shall describe additional geometric relation-
ships that exist among the sets of optimal strategies. These relationships
can be used to check the completeness of the sets of solutions.

We shall need to introduce some additional terms and symbols as-
sociated with the set of solutions. To clarify these terms and symbols we
shall apply them to the particular game whose payoff matrix is defined by

Rl ' R2 R3

B —1 3 -3
A =B 2 0 31
By 2 1 0
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Let the set of pure strategies for Blue be denotedby I = {1,2,. .., m}
and for Red by J = {1,2,...,n}. In our example I = {B,, By, B3},
J = {Rl, Rz, Rs}

The set of mixed strategies for Blue can be represented by points
X = (21, &g, . . ., T») in m-dimensional space whose coordinates are non-
negative and whose sum is 1. The set of such points defines a simplex S(I).
Red’s set of mixed strategies is a simplex S(J). For the 3 X 3 matrix of
our example, S(I) is an equilateral triangle with sides of length V2 (Fig. 6).

By Ry

. AB . Aﬁ

Figure 6
The vertices of the triangle represent the pure strategies. Similarly, S(J)
is an equilateral triangle. Every point in the triangle represents a mixed
strategy.
We let X(A) be the set of optimal mixed strategies of Blue—i.e., for
each X ¢ X(A4) we have

3 3

mli,n X'AY = ».

Let Y(A) be the set of optimal mixed strategies of Red—i.e., for Ye¥(4)
we have
mgx X'AY =v.

In our example, it can be verified that Blue has a unique optimal strategy—
1, %2,0). However, Red’s set of optimal strategies has two extreme
points—(0, %, 1) and (%, &, 3). Thus X(A) is the point whose coordinates
are (3, %,0) and Y(4) is the line segment, whose end points are (0, 2, )
and (3, %, 3)-
With each mixed strategy X of Blue we can associate a set I;(X) which
is the set of pure strategies that have positive weights in X. Thus

II(O) 1; O) = {Bz} and Il(%) %1 0) = {Bll Bz}.

Let I(Y) be the set of pure strategies of Blue which yield v when played
against Y. In our example, it can be verified that (0, %, %) = {B, Bs}.
In a similar manner we may define for Red the sets J1(Y) and J:(X).
Thus

Jl(%: %7 %) = {Rly R2; R3}
and J2(3, %, 0) = {Ry, R, Rs}-
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Effective strategies. 1t is evident that for all X interior to X (4) the set
I(X) is the same, so let us denote this set by I.. Also, for all Y interior to
Y(4) the set I,(Y) is the same; we shall denote it by I, Further, it can
be shown that the two sets are identical, or

Il = Iz.

The identical sets I and I, are called the effective strategies for Blue. They
have two important properties: First, they are the strategies which appear
with positive weights in every interior solution; secondly, they yield the
value of the game against every interior optimal mixed strategy of Red.
With a similar definition for Red’s strategies, it follows that

J1 - Jz,
and they are the effective strategies for Red.

In our example, Blue has a unique optimal strategy X = 3, % 0).
Thus I1(X) = {By, Bs}. Now the set Y (4) consists of strategies of the form

5

where 0 < a < 1. Now for each Y interior to Y(A) we obtain the value
of the game, 1, for strategies B and B,. Thus Io(Y) = {By, B} = I, = I..
Similarly Ji(Y) = {R,, Ry, Rs} = Jyand Jo(X) = {Ry, Rs, Rs} = Js = J,.
Two strategies, By and By, are effective for Blue and all three strategies are
effective for Red.

1—a 2 3 a 1
Y=[ 7§a+5(1—a),§+5(1—a)];

Essential subgame. If we construct a payoff matrix A; having the set
I for its rows and J for its columns, we obtain the essential submatriz of A.
The value of the essential subgame is the same as the value of the game A.
Further, X(A) will be a subset of X(A4,) and Y (4) will be a subset of Y(Ay).

The essential submatrix in our example is determined by I; = {Bi, By}
and J; = {R1, R2, Rg}, or

Ri R, R;
_Bi[—-1 3 =3
A“Bz[ 2 0 3]’

Solving A; we get X(4:) = (3, 2) and Y (4,) is the line connecting (0, %, 1)
and (3, 3, 0). The value of the game A;is 1. Now Y (4), which is the line
with end points (0, 3, ) and (3, £, ), is clearly a subset of Y(A4,).

Dimension of solutions. The sets X(A) and Y (A) are convex polyhedra.
Let S(I1) be the simplex of the effective strategies of Blue. Then S{I,) is
the smallest closed simplicial face of S(I) that contains X(4). Similarly,
8(J1) is the smallest closed simplicial face of S(J) that contains Y(A).

Since I, = {By, By} in our example, S(I,) is the line joining B; and B,
of S(I). Since J1 = {Ry, Ry, Rs}, then S(J;) = S(J). The simplex S(I))
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has dimension 1 and S(J:) has dimension 2. Since S(4) consists of one
point, it is therefore of dimension 0. The dimension of Y(A)is 1. In general,
the dimensions of these various sets are related as follows:

dim 8(I;) — dim X(4) = dim S(J,) — dim Y(4)
_ {rankAl ifo=20
T lrank A, — 1 if» 0.

In our example, we have rank 4; = 2, v = 1, and dim Y(4) = L.
Substituting in the above we have

1-0=2-1=2-1.

12. TARGET SELECTION—FOR ATTACK AND DEFENSE

The target selection problem frequently appears in military situations.
In its most general form the problem may be described as follows: Sup-
pose the Attack and Defense each have a fixed quantity of resources to
allocate among a series of targets of different values. How should the
Attack and Defense select the targets for the allocations?

Let us examine the simplest of the target selection problems. The At-
tack has one unit and the Defense has one unit; each unit is to be allocated
to some target. Which target should receive the allocation?

The game may be described as follows: '

Targets. There are n targets which we label 71, T, . . ., T,. We assume
that these targets have values ai, @s, . . ., @, Tespectively, which are
ordered as follows:

> a>...>a,>0.

Attack. The Attack, Blue, has one attacking unit to allocate to some
one of the n targets.

Defense. The Defense, Red, has one unit of defense to allocate to some
one of his targets. It is assumed that the unit of defense has a defense
potential p—i.e., if an attack is made on a defended target, then with
probability p, the Attack fails to destroy the target. Hence 1 — p is the
probability that Blue is successful in destroying this attacked target.

Strategy. A strategy for Blue is a choice of a target for attack. A strat-
egy for Red is a choice of a target for defense. Hence each player has n
strategies.

Payoff. We shall assume that if an attack is made on an undefended
target, Tk, then the payoff to Blue is the value, ax, of that target. How-
ever, if an attack is made on a defended target, T;, then the payoff is
(1 — p)a, the expected damage to the target. Therefore, the payoff matrix
is the following:



Target
attacked

Because of the special form of the payoff matrix, we shall solve this
game by guessing a solution and then verifying it. However, to make a
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TArRGET SELECTION PaYOFF

Target defended

Tl T2 “ e Tn
Tl (1 — p)a1 o P a
T, Qs 1 —-pa ... as
T, Gn an 1 — p)a.

good guess it is necessary to make some preliminary investigations.

It is reasonable to expect the solution to have the property that each
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player randomizes over the same high-valued targets. That is, let us
assume that X*, Y* is of the following form:

where

X* = (331, T2y o o o, Ty 0, O, O),
Y* = (ylr Yy - - -5 Yy 07 O; 0))
z; > 0,

ZT; = U,
yi>07
Yi =\,

where the value of ¢ is to be determined.
Since y; > 0, y2 > 0, it follows that

(1 — plaxs + asts + . . . + ar = v,
oz + (1 — plage: + . .. + ax: = .

Subtracting the first equation from the second, we get

or

In general, we have

However,

Let us define

Pty — pasxs = 0,

ar1xy
Ly = —
[22]
= 4
z a;
n t t
a1y
Z2x=2 4= 3 =1
i=1 i=1 i=1 G4
Eq
A= 3 —

i<t
P>t
ILg
>4

forz <t
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We get
1

Ty = *
alA t

Therefore X* must be such that
forz < ¢,

A

iAt

X;
forz >t

I
[~

To obtain the form of Y* we note that z; > 0 and 2, > 0. Therefore
1 —plays + oy + . .. + aye =9,
agn + (1 — plasy: + . .. + azys = 0.
From this pair of equations and since Y* is a mixed strategy, we get

ATy e
yz—p[l a2(1 pyl)]-

Using the fact that z; > 0 and 2; > 0 for ¢ <t we obtain, by a similar

argument,
I N T ;
Yi = p[l py (1 pyl)] forj <t
But
t
Zyi=1
i=1
This yields Y* of the form
1 t—p .
C = = _ <
Y; p[l a]-At] forj <14,
=0 forj > t.

We also obtain a guess of the value of the game, since we must have
v= (1 — paxy + a2+ . . . + axe
t
= Z 0 — pih
t=1
=t ”P
A,
Verification. We shall now prove, by verifying, that

(i) The optimal strategy for Attack is

1 .
xi=m fori <1,
fori > &

=0
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(i) The optimal strategy for Defense is

1 li—1p .
Yi p(l 4 A, ) forj < ¢,
=0 forj >t

(iii) The value of the game is
_l=p_ _kE—p
PTA TRETA
Note that the value of ¢ is defined by the location of the maximum
of (k — p)/As.
Let us verlfy that the strategy above is optimal for the Attack Clearly
z; > 0 and '5‘ z; = 1. Hence (i) deﬁnes mixed strategy. Computing

1=

expectations, we have

n n
_21 @iZ; = '21 ax; + a;(1 — p)z;
i= i=

i)
> —1——|-a~(1— ) 1 forj <t
i< @il ! p a;A; J=h
1 .
,-;3:5; Ly forj > ¢,
t—p forj < ¢,
4,
52 forj > ¢
a, It
Therefore,
2 Q%5 2 for all j.
i=1 At

Now let us verify that (ii) is optimal for Defense. Clearly E Y; =

That y; > 0 will be verified later. Now compute expectations

_2 i = 2 ay;+ (1 — pay:
Jj=1 1#j<n

i

a % yi+ (1 — play:
t#j<n
= a1 — py,)

%ﬂ iti<t,
t

a; if 2> ¢
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This implies that if ¥*, as defined above, is a solution, we need

a; < t—p fors > &
A,
In particular,
t ——
a1 < A,
or p<t—amA;=t+1— amdey

Also, since we require y; > 0, we get p >t — a:d..
The preceding leads us to study the function

¢ =k — arAs.
Let us compute

o1 — e =k + 1 — 1l ks — k4 aide
=1- ak+1Ak+1 + ards

>1— o (Ak + ”1—) + arpdr = 0.
Ar41

Thus ¢ is a strictly increasing function of k. Since ¢1 = 0, and if we define
¢ns1 = o, then it follows that there exists exactly one positive integer
t < n such that

¢ < p < b
For this integer ¢, we have

t — agAg S p <1 + 1 — ag+1At+1.
This gives us the inequality
t —_
a1 < _A_ﬂ < a.
14
This inequality combined with

Q> a > ... > 0

yields
. t—;——ﬂ <a; fori < ¢,
¢
t—i—g > a; for ¢ > .
t

To complete the verification we need to show that y; > 0 for j <t
This is exactly the statement
t—Z—P < q forj <t
i
which has been shown above.
Recall that the value of ¢ was defined by the inequality

¢ < p < b
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We shall now show that ¢ is also given by

The function b —
oo -

has a maximum, say at ¥ = u. Hence we have
fu+1) < f(w),
flu —1) < f(w).
Evaluating the function at w, v — 1, and uw + 1, these inequalities yield
U— A, XpLu+t+1—aden. .
This is exactly the inequality satisfied by the integer ¢. Hence u = {.

13. SOLUTION OF THE GAME “LE HER”

This game was described in Example 3, Chapter 1. If we define the
payoff to be 1 if the dealer wins, and 0 if the receiver wins, then we can
compute the payoff matrix associated with the 21% X 2!3 ways of playing
“le Her.” For example, if the strategy selected by the receiver is to change
any card which is 6 or under and to hold any card which is 7 or over, and
if the strategy selected by the dealer is to change any card which is 8 or
under and to hold any card which is 9 or over, then the payoff corresponding
to this way of playing the game is obtained from the matrix

Receter
cCcCcCcCcCcCCcCC s 8 8 8 8 8 8
1 2 3 4 5 6 7 8 9 10 13
"50 50 50 50 50 50 23 19 15 11
43 50 50 50 50 50 23 19 15 11
39 39 50 50 50 50 23 19 15 11
35 35 35 50 50 50 23 19 15 11
31 31 31 31 50 50 23 19 15 11
27 27 27 27 27 50 23 19 15 11
23 23 23 23 23 23 26 19 15 11
19 19 19 19 19 19 26 22 15 11
15 15 15 15 15 15 50 50 50 O
11 11 11 11 11 11 50 50 50 50
su |7 7 7 %7 %7 7 5 50 5 50 50
S12 | 83 3 3 3 3 3 5 5 50 50 50 50
813 |50 50 50 50 50 50 50 50 50 50 50 50 50

ot
=
Ju—n
N

Dealer

B2 NeoNeoNoNeoNeoNoNeoNe)

—

S © BTG N

© O =1 AT NN A ] Ay e
O O O o W W L W
coocoocccoocooo o

where the elements in the matrix represent 50 times the probability of the
dealer’s winning for each of the possible ways that the cards may be dealt.
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Now the probability that the particular pairs of cards will be dealt is
given by
& & = g4y  for nondiagonal elements,

& = iy for diagonal elements.

Therefore we need to multiply diagonal elements of the matrix above by
3/(663)(50) and nondiagonal elements by 4/(663)(50) and add the 169
results, which gives 16,146/ (663)(50), the payoff for this pair of strategies.

It is not necessary to compute the payoff for the entire 23 X 23
matrix, for it is apparent that any strategy in which exactly » changes of
cards appear is dominated by a strategy in which the first r cards are
changes and the remaining 13 — r are stays. This follows from a dominance
argument. It is also intuitively evident, because if, for example, it is ad-
visable to stay with a 3 and to change a 4, it is certainly more advisable
to change a 3. This reduces the matrix to 14 X 14. Finally, the 14 X 14
matrix can be reduced to a 2 X 2 matrix, again by a dominance argument.
The resulting 2 X 2 matrix is the following:

Receiver

Hold 7 Change 7
and over and under

Holdg [ 16,182 16,122
and over 33,150 33,150
Dealer Change 8 16,146 16,182
and under | 33,150 33,150

Solving the 2 X 2 game, we obtain the optimal strategies

for the Dealer:

L

¥ L}
mf oofct  cojen cofes
[o—

for the Receiver:

and the value of the game is
for the Dealer: 0.487,
for the Receiver: 0.513.

14. SOLUTION OF THE GAME OF “MORRA”

This game was described in Example 2, Chapter 1. Since the game is
symmetric, the two players will have the same strategies. The solution can
be obtained by examining square submatrices and using dominance argu-
ments. There are four extreme points and they are close to one another:
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©, 0, ¥, 0, 5, 0, 7%, 0, 0),
(0: 07 %767 07 %‘%7 0) '3’9’7'7 07 0)7
©, 0, #%, 0, 1%, 0, 1%, 0, 0),
©, 0, ¢}, 0, 3%, 0, &, 0, 0).

It is also interesting to note that the essential submatrix has rank zero; it
is the matrix

0 00
0 0 0]
0 00

15. RECONNAISSANCE AS A GAME OF STRATEGY

The advisability of reconnaissance before attack can be investigated by
considering the problem as a game of strategy. The purpose of reconnais-
sance is to obtain information about the enemy’s strategic intentions.
Having the information, the attacker can more effectively plan his attack.
However, the attempt to obtain information is costly and it may not suc-
ceed if the enemy invokes effective countermeasures. This conflict of in-
terest, whether or not to reconnoiter, can be resolved within the framework
of a game of strategy.

To illustrate the essential principles, we shall solve a hypothetical re-
connaissance problem associated with a small number of strategies for each
side. No additional principles are introduced if the players have a large
number of strategies. Thus we shall assume that the attacker and defender
have two strategies each.

Let us assume that the attacker, Blue, wishes to seize a defended enemy
position. For simplicity, let us assume that he has two courses of action,
his two strategies:

(® attack with his entire force;

® attack with part of his force, leaving the remainder as reserves and

a rear guard in case the enemy “outflanks” him.

The defender, Red, is assumed to have two possible courses of action,
his two strategies:
defend with his entire force the objective of the attacker;
[z defend with part of his force, and send the remainder to “‘outflank”
the enemy and attack the enemy from the rear.

There are four possible outcomes of the above courses of action. They
can be summarized by the following 2 X 2 matrix:

o &

. @[an a12]
4= @ an G
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where, for example, ay represents the value to Blue if he attacks with part
of his force and Red defends with his entire force.

Suppose that the outcomes are such that if Red uses strategy [il, then
Blue would prefer to use strategy @), i.e., an > an, and if Red uses strategy
[2], then Blue would prefer to use strategy (@. Clearly, the attacker could
benefit from a knowledge of the defender’s intentions. Thus, the attacker
might find it profitable to send out a detachment of men to reconnoiter in
an attempt to discover the plans of the defender. In order to defend him-
self against such possible action the defender may take countermeasures.

Now if the attacker decides to reconnoiter he must sacrifice some of his
attacking forces. If the defender decides to take countermeasures he must
sacrifice some of his defensive forces. Let ¢ be the cost to the attacker in
in order to reconnoiter and d be the cost to the defender in order to use
countermeasures.

The decisions of the attacker, whether or not to reconnoiter, and of the
defender, whether or not to use countermeasures, have increased the num-
ber of strategies available to the two sides. Whereas the original game had
only two strategies for each side, the resulting reconnaissance game will be
seen to have 16 strategies for the attacker and 4 for the defender. Of
course, many of the strategies will turn out to be poor strategies. But in
establishing the game we must enumerate all of them.

A strategy for the attacker will be a set-of instructions which tell him
how to act taking into account the information he may receive. A con-
venient way to represent symbolically a strategy for the attacker is by an
ordered sequence of numbers (u; z, ¥, 2) in which each letter takes on the
value 1 or 2, and they have the following meanings:

u = 1. Reconnoiter.

u = 2. Do not reconnoiter.

z = 1. Play strategy @ if no information is received about the
defender.

z = 2. Play strategy @ if no information is received about the
defender.

y = 1. Play strategy @ if the information indicates that the defender
is using strategy [1].

y = 2. Play strategy @ if the information indicates that the defender
is using strategy [1].

z = 1, Play strategy @ if the information indicates that the defender
is using strategy [2.

z = 2. Play strategy @ if the information indicates that the defender
is using strategy [2].

For example, the strategy (1;1, 2, 1) instructs the attacker to recon-
noiter, and, if no information is obtained, to play strategy ®O—attack with
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all his forces; if the information indicates that the enemy is using strategy
play strategy @; if the information indicates that the enemy is using
strategy [2] play strategy . There will be 2* = 16 different strategies for
the attacker. Some of them are redundant, and they will show up as such
in the payoff matrix.

A strategy for the defender is an ordered sequence (s; t) where each
letter takes on the value 1 or 2 with the following meanings:

s = 1. Take countermeasures.
s = 2. Take no countermeasures.
t = 1. Use strategy [1].

t = 2. Use strategy [2].

Thus (1;2) means that Red takes countermeasures and uses strategy
[z, i.e., defends with a partial force.

With this notation for strategies, the 64 possible outcomes of the game
can be summarized by the payoff matrix 4, given by:

RECONNAISSANCE PAYOFF

(1;1) 1;2) 2;1) (22

Gy, Tan—c+d ap—c+d an—c iz — € |
1;1,1,2) apy —c+d ap—c+d an—c a2z —¢
GL2, D) |an—c+d ar—c+d an—c an—c¢
;1,22 |ean —c+d ap—c+d an—c am—c¢
1;2,,) on —ec+d an—c+d au—¢ Oz —¢
1;2,,2) | @an —c+d @n—c+d an—c¢c a2 —¢C
1;2,2,) |an —¢c+d @ —c+d an—c ay—¢
;2,22 |an—c+d an—c+d an—c am—c¢

A= 2;,141) [ an+d ap +d an a
2;1,1,2) | au +4 ae +d an Az
(2;1,2,1) | au +4d ap +d an a2
(2;1,2,2) | an + d ap +d an Ao
2;2,1, 1) | an + d an + d a a2
2;2,1,2) | an +d an+d an Q22
2;2,2,1) | aa+d an +d an an
2;2,2,2) Lan +d an +d an Qs a

For example, if Blue uses strategy (1;1,1,2) and Red uses strategy
(1; 2) the payoff aiz — ¢ + d is computed as follows: Blue reconnoiters at
a cost ¢ but receives no information about the defender, and so he selects
strategy @. Red takes countermeasures at a cost d to him or a gain of d
by Blue, and uses strategy [2]. Therefore the payoff to Blueis a;s + d — e.

This sixteen-rowed matrix may be reduced to a four-rowed matrix by
testing for dominance. Every odd row is dominated by the next even row,
which eliminates eight rows. Among the even rows every (2k + 2)th row
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is dominated by the (2k)th row where & = 1, 3, 5, 7. This eliminates four
more rows, leaving the following 4 X 4 matrix:

1,1 1,2 2n 22
(171;1;2) apy —c—+d Gz—c+d an—c¢c aw—c
B=(1;2,1,2) on—c+d an—c+d an—c am—c|
2;,4L,2) lan+ d ap+d an Q22
(2;2,1,2) Lan + d an + d g1 125

It is evident from the matrix B that the decision by the attacker of
whether or not to reconnoiter and by the defender of whether or not to
invoke countermeasures will depend on the costs ¢ and d. A solution of
game B, i.e., the computation of a pair of optimum strategies, will indicate
the advisability of reconnoitering and the use of countermeasures.

The reconnaissance problem we have described is relatively simple. It
can be expanded to include the situation where the attacker receives par-
tial information about his enemy, or where the attacker uses several types
of reconnaissance. The same approach can be used to compare different
types of reconnaissance in order to select the best type.

Returning to the original problem, let us solve a particular reconnais-
sance game. Suppose the matrix A is given by

B
4= 12 )

and let ¢ = 9, d = 7. Then the matrix B becomes

1L, 1,2) 21D 22
(1;,L,2) 46 22 39 27
;21,2 10 34 39 27
T(@;1,1,2)| 55 31 48 24
2;2,1,2) L 19 43 12 36

B

This game has no saddle-point. Since no row (column) dominates any
other row (column), it is necessary to solve a 4 X 4 game. This can be
done in several ways. However, the reader can verify that the following
are solutions of the game:

(a) For Blue, the attacker,

T = ('112'7 Ta 0, '1%))
xé = (%%7 '316’) 0; %‘%’))
xé = (0) %) oo %)7

! — (28 3 17
7 = (25,0, 5%, 15).
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(b) For Red, the defender,
Y, = (07 07 %)

The value of the game is 30.

Thus the defender never takes countermeasures and defends } of the
time with his entire force and 2 of the time with part of his force. The
attacker has many optimal possibilities open to him, given by his large
number of optimal strategies. Among his possibilities is the following: rec-
onnoiter with probability 2 and not reconnoiter with probability 3. If he
does reconnoiter and receives no information, then with probability § he
uses strategy (D and with probability % he uses strategy @; if he does recon-
noiter and receives information that Red is using strategy [il, then Blue
selects strategy (O with probability ¥ and strategy @ with probability 3,
and similarly for strategy [z]. If Blue does not reconnoiter, he always uses
strategy (2), or leaves a rear guard.

)

)-

16. APPLICATION OF STRUCTURE THEOREMS TO RECONNAISSANCE

In the particular reconnaissance game solved in the previous section,
we listed four basic solutions for Blue and one for Red. Every linear com-
bination of these four basic solutions will be a solution of the game for Blue.
We wish to verify that there are no other solutions.

Since the matrix B of the reconnaissance game is 4 X 4 we can repre-
sent each mixed strategy for player I by a point in a tetrahedron, S(I).
The four basic solutions X3, X», X3, and X, can be shown to lie on a plane.
Taking every linear combination of these four basic solutions we obtain
X (B), the set of all solutions. X(B) will be a plane in the tetrahedron.

Clxg=1)
A
Dix,=1) Bxp=1)
“
X8) £
Alx=1)
Ficure 7

In the diagram (Fig. 7), S(I) is the tetrahedron whose vertices are 4,
B, C, D. The four triangles are the four faces of the tetrahedron. X(B) is
the quadrilateral whose vertices are Xi, X, X3 X The point A4, for
example, is defined by x; = 1 and therefore is written as A(X; = 1). Now



66 PROPERTIES OF OPTIMAL STRATEGIES
the smallest closed simplicial face which contains X(B) is the tetrahedron,
or

S(I) = SI) and dim s(I,) = dim S(I) = 3.

We can represent Red’s strategies geometrically (Fig. 8). S(J) will be
a tetrahedron. Since Red has a unique strategy ¥ = (0,0, 1, 2), the set
Y (B) is a point F on the line D'C’.

C’(}’f”

Y8
D'(y4=V) B0

A’()'ﬁﬂ

Ficure 8

The smallest closed simplicial face containing Y (B) is the line D'C’, or
dim S(J,) = 1. Since Y is unique and its first two components are zero,
it follows that the essential submatrix B; consists of four rows and the
last two columns. The rank of this matrix is 2. Substituting in the

dimensionality relationship,
dim S(I;) — dim X(B) = dim S(J;) — dim Y(B)
= rank B; — 1,
we find that the relationship is satisfied, for
3-24+1—-0=2-—-1.
Now
K{ = X{B = (34, 30, 30, 30),
K} = X3B = (30, 31%, 30, 30),
K} = X3B = (30, 37, 30, 30),
K; = XiB = (37, 30, 30, 30),
H' = BY = (30, 30, 30, 30).

By definition,
I, = {1; 2,3, 4})

J 1= {3, 4}
An examination of the above K”’s and H' shows that
J2 = {3: 4};

12 = {17 2; 3) 4}’
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and so I, = I,
Ji1 = Ja

If it were the case that dim X(B) < 2, the above verification would be
sufficient to insure that X(B) and Y (B) are the complete sets of optimal
strategies. However, dim X(B) = 2 in this example, and it is necessary to
account for each face in X(B). Now each face can be accounted for in
either of the following two ways: (1) the element z; may be zero in the
two extreme points which span the face; (2) the same component k;, in
the two K’s associated with the two extreme points which span the face,

is equal to » and does not belong to Ja Consider the reproduction of
X(B) (Fig. 9).

X | X
Ficure 9

X4=(4l%,0,1—3§,11—g~ Xé=(,1—24§1-,1—§&4—,~i§4—§4-
K; = (37, 30, 30, 30) K3 = (30, 37, 30, 30)

X{ = ('112') ’112'7 07 1_42‘) Xé = (’%%; "916'7 0; ?}i%)
K; = (34, 30, 30, 30) K; = (30, 313, 30, 30)

All of the faces except the face numbered 3 are accounted for by this
process. For example, face number 1 is accounted for by the fact that
x; = 0in both X{ and X3. The fact that face number 3 is not accounted for
means there exists at least one more extreme point between these two. To
find this extreme point glance at the sketch of X(B) and its relation to
S(I). It is reasonable to believe that there exists only one additional ex-
treme point and that it occurs at the intersection of the plane defined by
X (B) and the line DC of the tetrahedron. One of the reasons for so believing
is that the existence of such an extreme point would not disturb the previous
satisfaction of the first two conditions. Such a point then, if it exists,
must be of the form



68 PROPERTIES OF OPTIMAL STRATEGIES

Xs=aD+ (1 — a)C, 0<a<l,
where D =(0,0,0,1),
C =(0,0,1,0.

The unknown « can be found by observing that, since J, = {3, 4}, the
third and fourth components of X§{B are v and one finds

a=45

Hence X5 =1(0,0,%,3).

The two new faces created by the discovery of Xj are readily explained.

The last extreme point has the property that if Blue uses this as an
optimal strategy, it is uniformly better than any other strategy in X (B)
in that it guarantees Blue a higher expectation than any other strategy
in X(B) if Red deviates from his optimal strategy.

17. ATTACK ON HIDDEN-OBJECT

An interesting application of games of strategy is to the general prob-
lem of destroying a hidden-object. A defender has an object of great value
which he may conceal in any one of many containers. The attacker makes
a series of attempts to destroy the object by destroying the containers.
Which container shall the defender use to hide the object and which
containers shall the attacker attempt to destroy?

An example of this problem is the following tactical situation: A bomb
is to be carried in one of two identical bombers, called P (protected) and
F (flank). The bombers fly in formation, say one behind the other, so that
a hostile fighter, wishing to attack the leader, must pass through the field
of fire of the trailer and run the risk, «, of being shot down before being able
to close in on its target. Once it has engaged its target, however, the
fighter can destroy it with probability 8. Since each attacking fighter has
an opportunity for just one pass, its ultimate survival is of no concern. The
fate of the bomb is supposed to be more important, disproportionately,
than the fates of any of the aircraft.

The strategies of the two players are easily described. The defender,
Red, chooses P or F, where he locates the valuable object. The attacker,
Blue, chooses an ordered set of n members, such as

F,PFF...,P

representing his target choice on each pass, provided the previous passes
have all failed. It is agreed that if one attack has succeeded, the subse-
quent tries are to be directed against the other container either until it,
too, has been destroyed or until Blue has used up his allotment of n tries.
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If F is intact, it is harder 1o destroy P than if F is gone. If F is de-
stroyed, the probability of destroying P is 8. If F is intact, the probability
of destroying Pis (1 — )8 = ~.

Let the payoff to the attacker be the expectation of destroying the
correct container; then the game is zero-sum.

One fighter. 1f the attacker is permitted only one attack, then he has
two strategies—attack P and attack F. The defender also has two
strategies—conceal the valued object in P and conceal the valued object
in I. The payoff for each outcome is given by the following 2 X 2 matrix.

Hippen-OBiEcT PAYOFF

Conceal Conceal

in P n F
Attack P [ v 0 ]
Attack F 0 8
Solving this game, we obtain that the value to the attacker is
== B'y .
B+

The optimal strategies are always mixed, and are the same for the two
players:

. - B
lay P with bability ——
play P wi proa11y6+7
Y

lay F with probabilit .
play vith p 1ty B+ ~
Two fighters. Tf the attacker is permitted two attacks, he has four strate-
gies and the defender has two strategies. The payoff matrix is obtained by
computing the compound probabilities and is given by

P F
P,P[2y -« By
P F| v 8
F,P|B*—By+~vy B
F,F | p® 28 — g*

To solve this 4 X 2 game we note that for 0 <y <8 <1,
v < B2 — By + v. Thus the second row is dominated by the third, and
may be eliminated. A further examination of some inequality relation-
ships between 8 and v will eliminate the fourth row, leaving a 2 X 2 game
to be solved. The solution is as follows:

) If B2 —By+ > — >0, the optimal strategies are, for the
attacker,
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attack P, P with probability 28 : g; i 18 : Zg

attack F, P with probability gg = g 1 8 = 53?

‘and for the defender,
Bl — v)
—8) +v0 -9

Bly —B8) + (1 — )
B(l =B+l —)

conceal in P with probability B

conceal in F with probability

The value to the attacker is
73(’)’ —B8) +2(1 — ),
g1 —B) + (1 —7)
(i) If B2 — By + 2 — v < 0, the optimal strategies are, for the
attacker,

v=2_

attack F, P;
and for the defender,
conceal in P.

The value of the game is

v=pF —pr+
n fighters. A typical strategy for the attacker in this case is an ordered
set such as P, F, F, . . ., P, representing his target choice on each of his

n passes, provided the previous passes have all failed. First, we note that
any strategy in which F appears exactly r times, where 0 < r < n, is
dominated by the strategy
¥ =FF...,FP,P,...,P,

with » F’s followed by n — r P’s. This means that if the attacker plans to
make r attacks on F, it is best to make them on the first » passes. This
is the reason for the elimination of row 2 in the 4 X 2 matrix of the
two-fighter case. It corresponded to the strategy P, F.

We have then, strategies Fr, r = 0,1, ..., n for the attacker and P
and F for the defender. The elements a(r, P) and a(r, F) of the (n 4+ 1) X 2
payoff matrix are found by considering the ways the attacker can fail to.
destroy the valuable target. Thus: )

ar,P) =1— (1 —8)y(1 — v — 81 - "7,
ar,F) =1— (1 -8y — v~
-y -1 =/ {d - — A=)}
The game is solved by making r continuous and making use of the
concavity in r (i.e., the second derivatives are negative).
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Let 7, be the solution of
da(r, P) _

dr 0,

and let R = 1= Then
o, Ing/1—-p8 —InlnP
fo="n In R '
The solution depends on the value of ro. If a(ro, P) < a(r, F), then the
attacker has a pure optimal strategy r, and the defender also has a pure

optimal strategy P. If a(ry, P) > a(r, F), then the attacker has a pure
optimal strategy r given by the solution of the equation

BB —v) (1 — v)""’

v —8) 1—-5
or approximately r = nvy/(8 + v). The defender has an optimal strategy
which is a mixture of P and F.
For the original discrete game, define the integer r; = [rs] and solve
the 2 X 2 matrix
a(ry, P) a(ry, )
[a’(rl +1,P) a(n+1, F)]

If a(r, P) < a(r, F), we have pure strategy solutions. If a(r, P) > a(r, F),
we have mixed strategies solutions.

18. SELECTING A PARTICULAR OPTIMAL STRATEGY

If a player has many optimal strategies, he may use any one of them
and he can expect to receive at least an amount », the value of the game,
regardless of the strategy used by his opponent. If his opponent also uses
an optimal strategy, then the player can expect to receive exactly this
amount v. Thus if both players play optimally, there is no reason for
preferring one optimal strategy over another except for reasons extraneous
to the game model. (Examples of extraneous considerations are prefer-
ences for pure strategies or preferences for mixed strategies having simple
components.) However, if we permit the unlikely possibility that an op-
ponent may make some mistake and fail to choose one of his optimal
strategies then, by selecting a particular optimal strategy, a player can
take maximum advantage of the mistake.

Among the solutions for each player there exist certain strategies which,
in addition to being optimal, take maximum advantage of the mistakes,
if any, of one’s opponent. We shall describe one method for choosing such
an optimal strategy. This particular optimal strategy will be chosen on
the assumption that the opponent will make some mistake, unknown in
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advance to the player, but that the opponent will try to minimize the
result of such mistake. '

Let us assume that Blue, the maximizing player, wishes to select an
optimal strategy which takes maximum advantage of Red’s possible de-
partures from his set of optimal strategies. Let the payoff matrix be 4
and the set of optimal strategies of Blue be T1(4). A procedure for selecting
a particular optimal strategy is as follows:

(i) Assume that Blue uses only mixed strategies belonging to T:(4).
This is equivalent to replacing the maximizing player’s pure
strategies by the extreme points of T:(4). )

(ii) Assume that Red uses only those pure strategies which yield more
than the value of the game to Blue for at least one optimal strat-
egy of Blue. This is equivalent to deleting from Red’s pure strat-
egies all pure strategies which yield the value of the game against
every optimal strategy of Blue.

(iii) Using the matrix A4, compute the new payoff matrix A associated
with the set of strategies defined in (i) and (ii).

(iv) Find the optimal strategies T:(A) of Blue. It isevident that 7:.(4)
is contained in T:(4). If Blue uses any strategy in 7:(4), he
will maximize the minimum gain for any departure of Red from
his optimal strategies.

(v) If Ty(A) is not unique, the above process may be repeated for
4 and T:(A). The process will either terminate with a single strat-
egy for Blue or every element of the payoff matrix, 4 derived from
A will be identical, in which case all strategies of Ty(A) are
equivalent—they all take maximum advantage of mistakes.

Exzample. In the game of Morra described in section 3 of Chapter 1,
we had the following 9 X 9 payoff matrix:

-0 2 2-3 0 0—4 0 0]
—2 0 0 0 3 3—-4 0 O
2 0 0-3 0 0 0 4 4
3 0 3 0—-4 0 0-5 0
A= 0-3 0 4 0 4 0-5 0}
0-3 0 0—-4 0 5 0 5
4 4 0 0 0—5 0 0 —6
0 0—-4 5 5 0 0 0 —6
0 0-4 0 0-5 6 6 0

The value of this game is zero. It can be verified that each player’s set
of solutions has the following four extreme points:

(a) = (O; 0, '1‘5§) 0, <% 0, Tsfi 0, 0)7
(b) = (07 0, ‘31"2" 0, 3%, O; g 0, 0);
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(c) = (0’ 0’ 27’ b 07 %‘%" 0’ 0)’
(d) = (O, 0, 23, 0, 2% 0, AT 07 0)

Replacing Blue’s nine pure strategies by the four extreme points, we
obtain the following 4 X 9 matrix:

8
2

o i

% 00%02%400 &
Bo|?r 00008043
Z 5000005 &
Her 0450000 &

Deleting from Red’s strategies all pure strategies which yield the value
of the game against every optimal strategy of Blue (delete columns three,
five, and seven), we obtain the 4 X 6 matrix:

Z:

oo
SHe % o
»:lmfj;;"w

ﬁlcn oo ;‘H
ol

e el
e oo

T

o

Solving 4, we find that Blue’s set of solutions has two extreme points
120

(?7 » 0;
(1L120"> Ta‘l‘%a O, '19’1"16 .
In terms of the original nine strategies of Blue, these two solutions yield
the same solution of A, namely:

(e) = (0: 0, 3%, 0, 3%, 0, % 0, 0).
The value of the game with payoff matrix 4 is . Therefore if Blue

uses the particular optimal strategy (e), he will gain at least < if Red ever
departs from an optimal strategy in the original game.

é]lE

30



4 GAMES IN
EXTENSIVE FORM

1. REPRESENTATION OF GAMES

Finite games can be conveniently represented with the help of topo-
logical trees. We shall give an example of such a representation for the
following two-person game. Suppose that the first move of the game is
made by Blue, who has to choose from among four alternatives. We rep-
resent this situation by the bottom part of Fig. 10, where B at the lowest

Figure 10

point of the figure indicates that the first move is made by Blue, and the

four rising lines indicate that Blue has four alternatives at this move. Let

us number the alternatives at this first move (and, indeed, at each of the

succeeding moves) in a counterclockwise sense with roman numerals. Thus
74
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alternative I at the first move is the one corresponding to the segment
leading to the vertex marked R in the figure.

Now suppose that, if Blue chooses I on this first move, then the next
move is to be made by Red, who in turn has a choice from among three
alternatives; and suppose that in addition it is given that if Blue chooses
II or III on the first move, then the next move is made by Red, who in
either case is to choose from two alternatives. This is indicated by putting
an R at the end of the segment corresponding to the first choice by Blue,
drawing three lines upward from this point, putting an R on the vertices
corresponding to moves II and III of Blue, and drawing two lines upward
from each of these points.

Suppose, moreover, that if Blue chooses IV on the first move, then the
next move is made by a chance device which chooses from two alternatives.
Suppose that this chance device is such that it assigns probability L to the
first chance alternative, and % to the second. We represent this in Fig. 10
by putting an O at the vertex corresponding to the move made by chance;
and putting 1 and £ on the appropriate lines rising from this vertex.

Finally, let us suppose that if Blue chooses I and Red chooses III, or
if Blue chooses II and Red chooses I, then the next move is to be made by
Blue again; that he then has a choice of two alternatives; and that these
are the only possible moves in the game. Then the tree in Fig. 10 represents
the complete structure of the moves of the game. '

Any unicursal path from the bottom to the top of the tree represents
a play of the game. There are just as many plays as there are top points of
the tree. Thus there are precisely 11 possible ways of playing.the game
represented in Fig. 10. For each of these ways of playing the game there
is a payoff to each player.

In order to complete the description of the game, it is also necessary to
specify how much the players know about the previous choices at the time
they make their moves. Thus suppose that when Red makes his choice he
does not know whether Blue has chosen II or III on his first move; we can
indicate this, as in Fig. 10, by enclosing the two corresponding points in
a region bounded by a broken line. We call such a set of vertices among
which a player cannot distinguish when he makes his move an information
set. If a player at a certain point is completely informed about the past
course of the play, the corresponding information set contains only the
single point, in which case we omit the broken lines.

If each information set contains just one vertex, we say that the game
is one with perfect information; that is, each player, at the time he makes
each of his moves, is completely informed about the past course of the play.

In general, a finite game can be represented as above by a finite tree.
The partition of the vertices into information sets is subject to the obvious
restrictions that all the vertices in a given information set must correspond
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to the same player, and must present the same number of alternatives.
In addition, we require that no information set intersect any play in more
than one point.

A strategy for a player will be a function which is defined over the class
of his information sets, and for each information set picks out one of the
available alternatives. Thus, for the game represented in Fig. 10, let « be
the set consisting of the bottom vertex and let 8 be the set consisting of the
two top vertices; then a strategy for Blue is a function f such that

f(@) e {1, 1L, TIL IV} and f(8) ¢ {I, 11}.

Thus Blue has six strategies in the game. For example, the strategy
(II, I) says that Blue first picks his second alternative and on his second
move he picks his first alternative.

2. GAMES WITH PERFECT INFORMATION—SADDLE-POINTS

We shall now examine a special class of games—the so-called games
with “perfect information.”” These games have the property that at every
point in every play each player whose turn it is to move knows exactly
what choices have been made previously. The moves are made alternately,
which means that, in terms of the graph, each information set consists of
one element.

Many common parlor games are games with perfect information.
Ticktacktoe, checkers, chess, backgammon, for instance, are games with
perfect information.

We shall show that the payoff matrix of any zero-sum two-person game
with perfect information has a saddle-point—i.e., that there are optimal
pure strategies for such a game.

In order to carry out the proof, it is convenient to introduce the notion
of the truncation of a game with perfect information. Truncations are
those games which arise from a given game if the first move is deleted.
The number of truncations is the number of alternatives available at the
first move. The payoff functions for these truncated games are the original
payoff functions, with their domains of definition suitably restricted. We
can also consider truncation of a strategy—it picks out the same alterna-
tives at the branch points as does the original strategy.

We shall prove that a perfect-information game has a saddle-point by
an induction on the length of the game—i.e., on the number of branch
points in the longest possible play of the game.

For games of length 1 (ie., games with one move) the theorem is ob-
vious. Now suppose that the theorem is true for all games of length less
than k. Let T be a game of length k. Suppose there are r alternatives on
the first move, and let I'y, Ty, . . ., T, be the r truncations of I'. Let A® be
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Blue’s set of pure strategies for the game T';. Let A® and A® be Blue's
and Red’s set of pure strategies, respectively, in the game T

By the induction hypothesis, there is a saddle-point in each of the
games T;. For each 1, let f3, g% be a saddle-point. Let M, be the payoff
function in the game T';, then we have

@ M(f1, g8) = Mfi, g9

M(f1, g%) < M(f% g9
for £ =1,2,...,r and for f; any member of AP and g; any member
of AP,

We need to distinguish three cases according to who makes the first
move—Red, Blue, or chance.

Case 1. The first move of T' is a chance move. Letting ¢ be a branch
point of one of the truncated games T';, and letting it correspond to a move
made by Blue, we set

(@ = fil-

If g corresponds to a move of Red, then set

g*(q) = gi(9)-
Since the first move is made by chance, it is clear that f* is defined over
every branch of T which corresponds to a move made by Blue, and hence
is 2 member of A®. We shall show that f*, g* is a saddle-point of T
Let the probabilities assigned to the r alternatives at the first move be
o, as, . . ., an. Let M be the payoff function in the game I'. Then, if f and
g are strategies in I,

M({f, 9) = 2 aiM(fs, g3).
In particular, since f3, . . ., f* are truncations of f* and gi, . . ., g7 are
truncations of ¢g*, we have

(4.2) M(f, g*) = Z a:M(fs, g7)
M(f*, g) = 2 ;M (fi, 9)

and

(4.3) M(f*, g% = Z aM(f3, 97)-

From (4.1) and (4.2) it follows that
Z aM(fi, %) < Z a:M (1, g%)
Z aM(f1, 9) 2 Z aiM(f%, g1

Hence (f*, g*) is a saddle-point of T.
Case 2. The first move, qo, of T is made by Blue. Let

(4.4) max M(f3, g% = Mu(f%, 92)-

it

M(f*, g%,
M g%).

I
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Now define a function f* by setting
(4.5) @) = s and f*(g) = fi(g

for any point ¢ in the truncated games T'; which correspond to a move
made by Blue. We define g* in the same way as in the previous case.

It is clear that f* and g* are strategies in I'. We shall show that they
yield a saddle-point of T'.

If g is any strategy for Red in T, and if g, is its truncation to I',, then

M(f* g) = M,(f2, 9.)-
In particular, we have

(4.6) M(f*, g%) = M(fi, gi)-

Thus, if g is any strategy for Red in T, and if g, is its truncation to T,
we see that

M(f*, ¢%) = Mu(fi, ) < ML(F%, 90) = M(f*, g).

Now let f be any strategy for Blue in T, and suppose that f picks out
the ith alternative on the first move, i.e., suppose that

fgo) = <.
Let f; be the truncation of f to I';. Then we see that, if g is any strategy
for Red in T, and if g¢; is its truncation to T';,

M(f, 9) = M(f, g.).
M(f, g*) = M(f; g9).

M.(f, g2y = M {fi, 97)-
Hence, we can conclude from (4.6) that
M(F*, %) = Mu(fi, g2) = M(f3, g0 2 M5, g0 = M(f, g*).
We see that (f*, ¢*) is a saddle-point as was to be shown.

Case 3. The first move of T is made by Red. This is analogous to the
preceding case.

In particular,

But, from (4.4) we have



5 METHODS OF
SOLVING GAMES

1. SOLVING FOR OPTIMAL STRATEGIES

From the fundamental theorem of game theory, the minimax theorem,
it follows that each player has an optimal strategy. Using an optimal strat-
egy (generally a mixed strategy), a player can expect to win a fixed amount
(the game value) regardless of the strategy selected by his opponent, and
this fixed amount is as large as is strategically possible. Of course, he may
win more than this fixed amount from his opponent if his opponent does
not use an optimal strategy. In order to protect himself against this un-
necessary loss, the opponent will also use an optimal strategy. We have
referred to a pair of optimal strategies, one for each player, as a solution of
the game.

The determination of all solutions of a game—or of even a single solu-
tion—is generally a lengthy computing task. As might be expected, the
volume of computations increases with the number of pure strategies
available to the two players, or the number of elements in the payoff
matrix. If at least one player has 2 or 3 pure strategies, it is possible
to represent the strategies in two dimensions and then obtain a graphical
solution.

We shall discuss various methods of obtaining some solution of a game.
We shall also describe methods for getting all solutions. Single solutions
will be obtained either by guessing a solution and then verifying it, or by
successive approximations. To obtain all solutions we shall, in effect, solve
a large number of linear systems of equations.

Since the volume of computing required to obtain a solution depends
on the number of strategies, it is important to reduce this number when-
ever possible. The dominance criteria discussed in the previous chapter

79
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can be applied for this purpose. It will be recalled that elimination by
nonstrict dominance may lose some solutions but elimination by strict
dominanece preserves all solutions.

We have already described one method for getting a solution—namely,
the simplex algorithm. We shall now discuss five other methods of solving
a game. They are: guess and verify, examination of submatrices, successive
approximations, graphical, and mapping.

2. GUESS AND VERIFY

Given a payoff matrix with a large number of elements we first examine
it for pure strategy solutions or saddle-points. This can be done very easily.
In order that a game have a pure strategy solution, there must exist an
element in the payoff matrix which is simultaneously the minimum of its
row and the maximum of its column. If no such element exists there are
no pure strategy solutions.

Example. The game defined by

Min of row
3 7 43 3
13 10 7 8 7
10 41 9 1
3 5 6 7 3
Max of column 13 10 7 9

has a pure strategy solution—Blue’s second strategy and Red’s third
strategy—and the value of the game is 7, since this element is the minimum
of row 2 and the maximum of column 3.

If the game does not have a pure strategy solution, i.e., a saddle-point,
and therefore has a mixed strategy solution, it may be possible to guess
a solution or the form of a solution. Some idea of the form of the solution—
e.g., the pure strategies which must be in the solution—can be obtained
from the particular game being solved or from the elements in the payoff
matrix.

If an analysis of the background of the game provides a guess of a
solution of the game, we can verify it very readily. In order for X,, Y, to
be a solution, they must satisfy

m}}n X{AY = max X'AY, = X{AY,.
X

Ezample. Suppose that the payoff matrix is given by
1 -1 -5
—1 1 =27
-5 2 0
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We guess that each player wishes to avoid using his third strategy, since
that strategy can cause a loss of as much as 5 but a gain of at most 2.
We therefore guess that ;3 = y; = 0 and then we need consider only the
smaller game defined by the 2 X 2 matrix,

1 ——1].
-1 1
It is obvious that this smaller game has for its solution z; = z: = %,
#1 = Y2 = %. Since for the original game we have

min X(AY = max X'4Y, =0,
Y x

it follows that we have arrived at a solution to the game.

3. EXAMINATION OF SUBMATRICES

The method of examination of submatrices, as discussed in Chapter 3,
provides all the solutions of a game by obtaining certain basic solutions
and then expressing every solution as a linear combination of these basic
solutions. The method consists of testing each square submatrix of the pay-
off matrix for all strategies active, and then testing an expanded vector for
a solution of the full matrix.

Let A = (ai;) be the payoff matrix having m rows and n columns.
Consider some r X r submatrix B = (b;) of A, where r=1,2,..
min (m, n). Let us test whether this subgame has all strategies active (i.e.,
whether there exists some Xy, ¥, such that XgBY = X'BY, = X(BY, for
all X and Y). This can be done (as was shown in Chapter 3) by construct-
ing the adjoint matrix J = (Bj:) of the matrix B and then computing all
the row-sums 2 B;; and column-sums E Bj,. If all 2r sums are non-negative,

or all nonposmve, then the pair of r-component vectors
2 BJ; 2 BN

5% B Y=33B
) T J

T; =

provide a solution of the subgame B.

It is next necessary to test whether the solution of the subgame B is a
solution of the game A. Introduce zero components for the m — r rows and
n — r columns of the matrix A which did not appear in submatrix B. This
yields the full vectors X = (z:), ¥ = (y;). Test whether the full vectors
X and Y solve A—that is, whether

n m

max 2 aily; = mm 2 ayT;.
1 J=1 3=1
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If X, Y solves A then it is said to be a basic solution of A and the value

of the game is
B . m
v = Y = = %4
m?,x ? aijy; >= By n;lnigl as;
i g
If this procedure is applied to every square submatrix of A we shall
obtain all the basic solutions of A. Every basic solution of 4 is produced
by some square submatrix of A. Since there are a finite number of sub-
matrices of A there will be a finite number of basic solutions.
All solutions of A are obtained by taking all possible convex linear
combinations of the basic solutions. Thus if Xj, X5, ..., X: are the I
basic solutions of Blue, then all his solutions are given by

aXi+ wXe+ ... 4 aXy,

where a; > 0 and Z a; = 1.

1=1

4. SUCCESSIVE APPROXIMATIONS

It is possible to obtain the value and a solution of a given game by a
relatively simple method of successive approximations. The method re-
quires only two operations: location of the maximum or minimum of a
discrete set of numbers, and addition.

Given a game defined by a payoff matrix A = (a,;), whose solution is
- unknown, then one way of determining an optimal strategy is to play the
game many times, each time selecting that pure strategy which is best
against the opponent’s total performance to that play. The relative
frequencies of these strategies will yield an approximate solution to the
game. o

The method can best be illustrated by an example. Suppose we are
given the game defined by the payoff matrix

P E]
o 2 1 o
@] 2 o 3}
®|l-1 3 -3

where the numbers in circles represent Blue’s strategies and those in
squares, Red’s strategies. Assuming that Blue begins the series of plays by
selecting (@, the successive approximations are shown by Table 1. The
symbols in the table have the following meaning: N is the number of the
play; ¢(N) is the pure strategy chosen by Blue for the Nth play; Ki(N) is
the total receipts of Blue after N of his plays if Red used his pure strategy
constantly, and similarly K»(N) and K3(N); o(N) is the least that Blue
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Table 1. SUCCESSIVE APPROXIMATIONS

N i(N) Ki(N) Ko(N) Kx(N) o(N) j(N) Hy(N) Hx(N) Hy(N) 5(N) #(N) — 2(N)

1 O 2 1 o .000 [3 o0 3 -3 3000 3.000
2 @ 4 1 3 500 [2] 1 3 0 1500 1000
3 ® 6 1 6 333 [2] 2 3 3 1.000 667
4 ® 8 1 9 250 [2] 3 3 6 1500 1.250
5 ® 7 4 6 .800 [2] 4 3 9 1800  1.000
6 ® 6 7 3 .500 4 6 6 1.000 500
7 ® 8 7 6 857 [31 4 9 3 1286 429
8 ® 10 7 9 .875 5 9 6 1125 250
9 ® 12 7 12 718 2] 6 9 9  1.000 222
10 @ 14 7 15 00 [2] 7 9 12 1.200 .500
11 ® 13 10 12 .99 [z 8 9 15 1.364 A55
12 ® 12 13 9 750 [3(] 8 12 12 1000 250

can expect to receive, on the average, after N of his plays; j(N) is the pure
strategy chosen by Red for his Nth play; Hi(N) is the total receipts of
Blue after N plays of Red against the constant strategy (O of Blue, and
similarly Hx(N) and H3(N); 5(N) is the most that Blue can expect to
receive on the average, after N plays of Red.

o(N) = %n}in K,(N) and #(N) = %m?x H(N).

Table 1 has been completed as follows: For the first play of the game,
assume that Blue chooses @. Then Blue will receive 2, 1, or 0 depending
on whether Red chooses [1], [2], or [3]. Red will therefore choose [2] for his
first play, since that minimizes Blue’s receipts; and Blue will thus receive
0, 3, or —3. For the second play, Blue will choose (2) since that maximizes
his receipts against Red’s first play. Thus after two plays, Blue has received
a total of 4, 1, or 3 depending on whether Red chooses [1], [2], or [3]. Red
will therefore choose [Z] since that minimizes Blue’s receipts for N = 2,
and makes Blue’s receipts total I, 3, or 0, depending on whether Blue
chooses @), (@, or @®. We obtain

»(2) =1 =050 and #(2) = $ = 150,

The process is identical for all successive N.

To obtain an approximation to an optimal strategy, we determine the
relative frequencies of each of the pure strategies in the table. Thus at
N = 12, we have

X=(Gpnrt) Y=
The value of the game is approximated by ¢(N) and #(NV). Thusat N = 12,
the value of the game is between 0.75 and 1.00.
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To solve a 3 X 3 game, we plot the rows and columns separately on
one of these systems of coordinates in two dimensions and consider the
two triangles formed by the two sets of three points. 1f both triangles
contain the origin, then:

(a) The game has a solution in which all strategies are active.

(b) The solution is unique and the game is completely mixed if and
only if the origin is actually interior to both triangles.

(c) The positions of the origin with respect to triangular coordinates
will determine the weights which each player should attach to his
strategies. For example, in Fig. 11, plotted in triaxial coordinates,
strategy (@ receives a weight OB/AOB.

Figure 11

If all strategies are not active, further information may be obtained
from the triangle not having the origin in its interior (possibly both
triangles):

(a) Construct any line through the origin so that the triangle lies
entirely in one half-plane.

(b) The vertices of the triangle correspond to the strategies of one
player. Represent those of the other player by any set of three
points on the positive axes of the triaxial system, for example
the points

(2; _1) —1)7 (—1) 2) _1): (—1; '_1; 2)
In triangular coordinates, use the three vertices

(1,0,0),(0,1,0), (0,0, 1).
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(¢) Then some combination of the strategies which lie in the same
half-plane with the triangle dominates some combination of those
in the opposite half-plane. If open half-planes can be used, then
the dominance is strict.

We can interpret the weak dominance to mean that the dominating

row (dominating column) must appear in the solution, while at least one
of the other two may be excluded.

Ezxample. Let the payoff matrix be given by
o & B

Or-1 3 -3
®| 2 o 3|
®| 2 1 o0

The triaxial representation of the strategies are as follows:

@ = ('_2; 10; _8); = (—6; 3; 3)7

@ = (1; —5; 4); @ = (5; _—4; _1)7

@ = (3; 0, —3)a B = (—97 9,0).
Plotting the strategies on triaxial coordinates, we obtain the two triangles
® @ ® and [1] 2] [3] (Fig. 12). The triangular positions of the origin are

®

|
10+

Fiaurge 12

(3,3,0) and (1, 2, 2). The left-hand figure shows that [I] dominates a
combination of [2] and [3], but not strictly. Therefore some solution ex-
cludes [i] and is (3, , 0), (0, 3, 3). The value of the game is 1.
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If the matrix is #n X 3, the rows may be represented as n points in a
triaxial system. The resulting configuration will be useful in picking out
which triples of columns to test for a 3 X 3 solution.

6. MAPPING METHOD FOR SOLVING GAMES WITH CONSTRAINTS

In solving for an optimal strategy of a game we assume that each pure
strategy may be played with any probability between zero and one. Aside
from the influence of the payoff matrix, we have no preference of strategies
or any desire to avoid certain strategies, whether pure or mixed. Now in
some situations we may wish to assure that a certain pure strategy is played
at least a certain per cent of the time, or that we play a given pure strategy
no more frequently than some other given strategy. Such a restriction
might arise from the ease or difficulty of playing certain strategies or from
the dependence of strategies. If we restrict the choice of strategies in any
way, we refer to the game as a game with constraints.

We have previously shown that X*, Y*is a solution of the game defined
by the matrix A = (as;) if and only if

max X'AY* = m;n X*AY = X¥AY*.

If the game has constraints then the preceding conditions are also necessary
and sufficient to define a solution, where X and Y are now the constrained
sets of strategies.

The solution X*, Y* of an arbitrary game with constraints has the
property that it simultaneously maximizes X'AY* with respect to X and
minimizes X*'AY with respect to Y. If we consider the set of strategies X
and the set of strategies Y, then X* is some point of X such that the maxi-
mum of X’AY* is assumed at X*, and Y* is some point of ¥ such that
the minimum of X*AY is assumed at Y*. It is this property that enables
us to find graphically the solution of a game with constraints.

The method of solution consists of partitioning the sets of strategies X
and Y by means of the payoff function. For each partition of X we shall
associate some subset Yy of Y. Similarly, for each partition of ¥ we shall
associate some subset X; of X. X, Y1 will be a solution if X, is associated
with Y, and Y, is associated with X;.

The method can best be described by means of an example. Let the
payoff matrix be

®[3 39 30
@{33 9 0}

®|28 4 25
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We wish to find the solutions of this game such that Blue has the
following constraints:

’

Ml

=i
IA A
§|r-‘ 21N

IAIA

5]
70 < T

zs 2 §(1 — 2Px).
This implies that (O must be used at least ten per cent of the time but
no more than eighty per cent of the time; ) must be used at least five per
cent of the time but no more than fifty per cent of the time; the frequency of
using strategy (® depends on (@, namely z; > €(1 — 22x;). Of course,
2 4+ 22 4+ 23 = 1, always.

Let us also assume that Red has the following constraints:

5 <y < 2, Ys = &

=4

The constraints of the first player imply that he picks only those
mixed strategies lying within or on the pentagon ABCDE in Fig. 13. The

Figure 13

second player picks only those mixed strategies lying within or on the
triangle XYZ. The boundaries of the pentagon and triangle are determined
by the constraints. Now 1, 23, 1 — 21 — 22 and y1, 2, 1 — 31 — ¥2 are the
probabilities of playing strategies @O, ®), ® and [1], [2], [3], respectively.
The expected payoff is

= (—10y: + 10y2 + )z + (10y1 + 10y: — 22z + (41 — Ty + 2PF).
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Let us rewrite the expectation ¢ as follows:

¢ = P11 + P2 + D3
= QT + QT2 + g,

where py = 10z — 102, + 1, ¢ = — 10y + 10y: + §, ete.

Now p1 = 0, p; = 0 divide the pentagon ABCDE into four regions:
OLABM, wherein p; > 0, p2 > 0; OMCDN, wherein p; < 0, p: > 0; OEN,
wherein p; < 0, ps < 0; OEL, wherein p; > 0, p. < 0. Similarly, ¢ = 0,
gz = 0, divides the triangle XYZ into two regions: WZXV, wherein
@ >0,¢<0; VWY, wherein 1 < 0, ¢ < 0.

For each point in the region OLABM the expectation ¢, as a function
of Red’s strategies, assumes the minimum at point Z in the triangle XY Z.
However, for the point Z, the expectation ¢, as a function of Blue’s strate-
gies, assumes its maximum at point D on the pentagon ABCDE, and
outside the region OLABM. Therefore, no point inside region OLABM
can provide a solution of the game.

Consider the point O, defined by p: = 0 and p: = 0, in the pentagon.
For this point ¢ assumes its minimum at every point in the triangle XY Z.
In particular, the minimum is assumed at V. The point V is characterized
by ¢1 = g2 = 0. For the point V, the maximum value of ¢ is assumed at
every point of the pentagon and hence at 0. Therefore the points O and V
are solutions of the game with constraints. These points are the intersection
of p1 = 0 with p, = 0 and the intersection of ¢ = 0 with ¢ = 0. O is
given by

4

— —_ _3 — _3
L1 =100 2= 160 T2 T 1o

10
V is given by
n=% =% B=%

There are additional solutions and they can also be found by the same
procedure. Consider the points in region OEN having the property that
p1 = p2 < 0. This determines the line z; = 2, z» < 4%. For each point
on this line the minimum value of ¢ is assumed at each point of XY. In
particular, the minimum is assumed at V. But if Red uses strategy V,
then ¢ will assume its maximum at every point in the pentagon, and in
particular on the line 2; = %, 2, < &. Therefore this line is a solution of
the game. It can be verified, by this procedure, that there are no other
solutions.

We have found that the solution of this game is:

Blue: 7 = 2, oy L 22 < 5, Tz=1— 2 — 2
1

Red: Y= 3, Y2 = 3, Ys = %
The value of the game is 6.5.
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7. MAPPING METHOD FOR SOLVING GAMES

Of course this mapping or fixed-point method can be used to solve
games without constraints. For a 3 X 3 game the strategy space is a right
triangle for each player. For example, let the game be defined by the
following payoff matrix:

-3 20
A= 01 2
1 21

The expectation, ¢, as a function of a mixed strategy of each player is

¢ =(—3x1 — 2x)y1 + (11 — 222+ Dy + (—2 + 22 + 1)
=(=3y1+ye— Do+ (—2y1 — 2y + Dxo + (g2 + 1)
= D1t + D2y + D3
= @1 + Q22 + qs,

where

P = —3x1 — 2y, q=—3n+y—1,
T =20+ 1, @@= -2y —2y+1,
Pr=—x+224+1, s=y.+ 1L

In the Fig. 14, the lines p1 = 0 and p, = 0 divide the strategy space
XWZ of Blue into two regions XYT and YTWZ. Similarly, the lines

¥
f

f)

Ficure 14
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¢ = 0, g2 = 0 divide Red’s strategy space ABD into two regions ABCE
and CDE. The regions are characterized as follows:

XYT: p1<0,p2<0
YTWZ: pr<0,p:>0
ABCE: ¢1<0,¢2<0

CDE: ¢.<0,q > 0.

Consider the point Z for which p; = 0 and p; = 1. For this point the
minimum of ¢ is assumed at y» = 0 or the line AD. In particular the mini-
mum is assumed at every point of the line KA. Now each point on line
EA has ¢1 < 0, ¢2 < 0, for which the maximum value of ¢ is assumed at
21 = 0, 2, = 0, or at the point Z. Therefore the point Z is a solution for
Blue and the line £A4 is a solution for Red.

In terms of the strategies, the solutions are:

for Blue: 2 = 0, s = 0, zz=1
for Red: %Sylgl; y2=0, y3=1—y1—'y2.

The value of the game is 1.

8. SOLUTION OF RECONNAISSANCE GAME BY MAPPING METHOD

In section 15 of Chapter 3 we showed how the problem of reconnais-
sance can be considered as a game of strategy. We considered a particular
reconnaissance game which yielded the payoff matrix

46 22 39 27
10 34 39 27|
55 31 48 24
19 43 12 36

We listed the optimal strategies without showing how they were computed.
Using the mapping or fixed-point method, we shall now compute the
optimal strategics.

If Blue uses a mixed strategy

X' = (21, @9, T3, | — 21 — T2 — T3)
and Red uses a mixed strategy
Y= (,yzys 1l —n— 1y — ),
then the expectation of Blue for the above matrix may be written as
¢ = D1 + Payz + Pays + Pa
1T + Q22 + Q33 -+ qs,
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where
P = 36z; 4 48x; — 17 Q= 36y1 b 12y2 -+ 36y3 -9
P2 = —12x, + 7 g2 = 36y; — 9
ps = 36z, 4 361, + 4823 — 24 ¢; = 48y; + 48y; — 12

Py = —9z; — 92y — 1225 + 36 qs = —17y1 + 7y2 - 24y3 -+ 36.
Introduce the following notation:

if p1 > 0, then write

n =+,
if ¢» < 0, then write
=,
if ps < p2 < p1 < 0, then write
==, Po=——, P3=———,

if ps > p2 > p1 > 0, then write
n =+, p2=++7 ps = + + +.

For any point in the strategy space of Blue for which p1 = +, p2 = +,
ps = -+, the minimum value of ¢ is assumed at the point ¢, = Y2 = ys = 0.
For the latter point in Red’s strategy space, we have

Q= —97 gz = —97 gs = _12)
or
h=— Q2= —, = —.

For these values of ¢;, the maximum value of ¢ is assumed at z; = z, =
Z; = 0 which yields
n=—=, pp=-+, ps= —.

Therefore no point in Blue’s strategy space for which p, > 0, p, > 0,
ps > 0 can provide a fixed point or a solution of the game. In a similar
way we map each of the possible regions in the space of strategies of Blue.
Table 2 summarizes the mapping of the entire space of Blue’s strategies.

Using the table, we note that the region defined by p; > 0, ps > 0,
ps = 0 maps back into itself. It follows that the optimal strategies for
Blue are given by the convex set X(A) defined by

36z; + 48z, — 17 > 0,
—12z, + 7 > 0,
36x; 4 362, + 48x; — 24 = 0,
2120, 2220, 220, 2a=1—12 — x5 — 23
From the table, it is seen that Red has a unique optimal strategy given by

1

h=vy2=0, ya=1%, yae=4



Table 2. SoruTioN oF REcoNNaisaNcE GaMES BY MarriNgG METHOD

¥6

) 2 3 4 (5)
Using (1), expectation, Using (3), expecta- | Using (4), value of
If Blue's strategy o, assumes its Using (2), tion, ¢, assumes its coefficients py at

1s such that megnimum at value of coefficients g, at minimum maximum al mazimum
P P2 Ps Y1 Y2 Ys '8 Q2 s 1 T2 T3 Pr P2 D
+ + + 0 0 0 -9 -9 —-12 000 - + -
+ + - 0 0 1 27 27 36 001 + + +
- - 00 1 27 27 36 0 01 + + +
0 0 - 00 1 27 27 36 0 01 + + +
+ - + 0 1 0 -21 -9 —12 0 00 - 4+ -
- - 0 1 0 —-21 -9 —-12 000 - 4+ -
0 -0 01 0 -21 -9 —12 000 - 4+ -
- -+ + 1 0 0 27 -9 36 0 0 1 + + +

- - 10 0 27 -9 36 0 0 1 + + +
-0 0 10 0 27 -9 36 0 01 + + +
-+ 0 « l -« 27 — 48« 27 — 36a 36 — 48 0 +
- 0 « l—-a 27 — 48a 27 — 36a 36 — 48« 0 +
o .. 0 « l —« 27 — 48a 27 — 36« 36 — 48« 0 +

+ a 0 l—a 27 27 — 36« 36 0 0 1 + 4+ +

- a 0 l1—a 27 27 — 36a 36 00 1 + + +

0 a O l-—@a 27 27 — 36a 36 0 0 1 + + +
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Blue’s basic solutions are the vertices of the convex set X(4). To
determine the vertices we hgve

x3=2;3%——‘_3x220 or 4z <
From the inequalities, we obtain
X2 _<_ -3-7—6-, I _<_ 1—72'.

These three inequalities and the equality, together with 1 > 0, z» 2 0,
determine a convex set having five vertices whose coordinates are

©, 75 15 ), (% 950,3), (5 15 0, 3),
(ﬁ'} 07 1_16_7 i—z‘)) (07 07 %7 %)'

These five vertices are the basic solutions for Blue.



6 GAMES WITH INFINITE
NUMBER OF STRATEGIES

1. INTRODUCTION

In a finite game, each player selects a strategy from a finite or discrete
set of strategies. The number of such strategies may be large, as in chess,
but finite. A natural generalization is to consider games in which a player
chooses a strategy from an infinite set of strategies. Such a game is called
a continuous or infinite game. The name derives from a closed interval’s
being called a continuum. There is no loss of generality if we assume that
the strategies are represented by points on the closed interval [0, 1]. For,
if S is the set of strategies, then by relabeling the elements of S, we can get
a game in which the selection of a strategy is made from the closed interval
[0, 11.

There are several reasons for developing a theory of continuous games.
Many military and economic problems, when viewed as games, involve an
infinite number of strategies. For example, a military budget can be
thought of as being divisible in an infinite number of ways between of-
fense and defense. In economies a commodity may have an infinite number
of price possibilities. Further, computations using a continuous variable
are sometimes easier than those using a variable which takes on a finite,
but large, number of values.

2. DESCRIPTION OF CONTINUOUS GAMES

In its simplest form, a continuous game may be described as follows:
Blue chooses a strategy z, where 0 < 2 < 1, and simultaneously Red
chooses a strategy y, where 0 < y < 1. The choices, z and y, determine
a play of the game, whose outcome is measured by a payoff M(z, y) to

87
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Blue. Since the game is assumed to be zero-sum, the payoff to Red is
-M (x; y)

Let us assume that the payoff function M(z, y) has a minimum with
respect to y for each z and a maximum with respect to z for each y. Sup-
pose Blue chooses some strategy z; then, depending on Red’s choice of
his strategy, Blue will receive a payoff of at least

(6.1) min M(z, y) = f(x).

Now Blue can choose z to make f(z) as large as possible. Hence there is
a way for Blue to play or there exists a strategy for Blue, so that he
receives at least

max min M (z, y).
z Y

Similarly, there exists a strategy for Red such that Blue receives at most

min max M (z, y).
v z

It is easily shown that these two quantities satisfy the inequality

(6.2) max min M (z, ¥) < min max M(z, y).
z Yy y z

If in (6.2) the equality holds, or that
(6.3) m?x mjn M, y) = min mfx M(z,y) = M(xo, yo),
then M(z, y) has a saddle-point at o, y. Since the strategies z, and yo
satisfy the conditions
(6.4) M(zo, y) > M (20, yo) for all y,
M(z, yo) < M (o, yo) for all z,

we call 2, an optimal strategy for Blue and y, an optimal strategy for Red.
Thus, if a continuous game has a saddle-point, then the saddle-point yields
a pair of optimal strategies, one for each player.

3. MIXED STRATEGY—DISTRIBUTION FUNCTION

Suppose the game is such that
(6.5) max min M(z, y) < min max M(z, y);
x v u z

then the game does not have a saddle-point. It will be recalled that if a
finite game does not have a saddle-point it is necessary to introduce mixed
strategies, which are probability distribution functions over the finite set
of strategies. In order to solve infinite games without saddle-points it will
be necessary to introduce probability distribution functions over the in-
finite set of strategies. However, it is no longer possible to think of a
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mixed strategy as a rule which ascribes a probability to each number in
the closed interval [0, 1]. We need a different definition of probability
for infinite number of strategies. Of course, any definition we formulate for
the infinite game must also apply to the finite game.

A mixed strategy in an infinite game is a random process for choosing a
number z from the interval [0, 1]. We can also think of a mixed strategy
as a random process for choosing a number no larger than z from the in-
terval [0, 1]. If £ is a random variable such that 0 < ¢ < 1, then a mixed
strategy is a function F such that, for all z in [0, 1],

(6.6) F(z) = pr {¢ < x}.

That is, F(x) is the probability that the number chosen by the random
process F' is at most z. For mathematical convenience, we shall modify
the definition slightly for the case where x = 0. We shall define F(0) = 0.
Thus F(0) is the probability that the number chosen will be actually less
than zero, not at most zero. Suppose 0 < z; < 2: < 1; then we see that

F(xz) — F(x:) = pr {m1 < £ < a9}

and F(z) — F(0) = pr {0 < &£ < z3}.
The function F is called a cumulative distribution function, or simply a
distribution function.

From our definition of ¥ in (6.6) as a probability function it follows
that F has the following properties:

@ Fx)>20forall0 <z < 1.
(i) F(O) =0, FQ) = 1.
(iii) F is a nondecreasing function of z.

F(x)) < F(zs) whenever z; < 2o
(iv) F is right-hand continuous in the open interval (0, 1), or

: lirg F(x + ¢ = F(x).

The last result follows from the fact that
Fea+e —F@) =pr{x<t<z+e¢.

Now for any given £ it is possible to find an ¢ > 0 which is sufficiently
small so that the above inequality cannot hold. Hence the probability
that £ satisfies this inequality approaches zero as e approaches zero.

Any function F which satisfies the above four conditions is a distribu-
tion function. It is obvious that for a finite set of strategies we can get a
mixed strategy from the distribution function over the finite set of
strategies. ,

We can construct new distribution functions from given ones as follows:
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Let Fy, Fs, . . ., F, ben distribution functions; then by forming any convex
linear combination of these functions,

F(Z) = alFl(x) + PN + a,.F,,(:I:),

where a; > 0 and = a; = 1, we get another distribution function.
Although a distribution function must be right-hand continuous, it

may be discontinuous. A common class of distribution functions which

are discontinuous are the step-functions. Define the following function:

I(z) =0 ifz <a,
=1 ifz>a.

Tt is obvious that if 0 < @ < 1, then I.(z) is a distribution function. It
has a discontinuity at * = a, with a jump of 1 at a. We call I.(x) a step-
function with one step at a.

The distribution function

F@) = anl(2) + coln(z) + . . . + anls(2),

where a; > 0,2 a; = 1,0 < #; < 2441 < 1, is a step-function with n steps.

To assist us in computing a distribution function F(x), we make use of
the following definition of choosing a point at random on a line: If a point
is chosen at random on a line interval of length [, the probability that it is

in a given subinterval of length \ is /L.

4. EXPECTATION—STIELTJES INTEGRAL

Having defined a mixed strategy as a probability distribution function,
we now need to define expectation. Suppose Blue receives a payoff P(x)
if he chooses strategy z. Suppose further that Blue chooses his strategy =
by means of a random device which picks z according to the probability
distribution function F(z). We wish to determine the expectation of P(x)
with respect to the probability distribution function F(x).

1t is clear that we cannot say this expectation is simply the sum of all
products P(x)F(x). On the other hand we may approximate the expecta-
tion by dividing the interval [0, 1] into a large number of subintervals,
computing the expectation over each subinterval, and adding these expec-
tations for all the subintervals. Suppose we divide the interval [0, 1] by
the points

O=xo<x1<x2<...<xn=l.

Let A= max (T; — Ti1)
1<i<n

and let i, < Z; <z forl1 <z < n.
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Then we can approximate the expectation of P(z) by

iéP@awuo—F@Hn
It
(6.7) igéfummm—mMm
A—0

exists and is independent of the choice of Z;, then this limit is called the
Stieltjes integral of P with respect to F from 0 to 1 and is denoted by

(6.8) ﬁmmwm.

We say that if P(z) is Blue’s payoff corresponding to a strategy choice z,
then if he chooses z according to the distribution function F, his expectation
will be

mmm:ﬁpmww.

The Stieltjes integral does not always exist. In particular, if P and F
have a common point of discontinuity, then the integral does not exist.
For example, let

Px)=F(x)=0 for0 <z <13,

Plz) = F(z) =1 fori <z<Ll
Here exactly one of the differences F(z;) — F(z;-1) is different from 0, call
it F(x) — F(xi—1), which is equal to 1. Then P(Z;) = 0 or 1 depending
on the choice Z;. Thus the limit (6.7) is not independent. of the choice of
the Z.’s and hence (6.8) does not exist.

5. STIELTJES INTEGRAL FOR CONTINUOUS FUNCTION
We shall now show that if P is continuous in the interval [0, 1], then
ﬁmmwm
exists.
Suppose the interval [0, 1] is divided into n intervals by the points

O0=20 <21 <2 <...<Z, = 1. Let the interval [z, zx] be denoted
by H. Define the following quantities:

M = max P(x),
H

me = min P(x),
H

n
§
l

Z MiF@) = F)),

&0
H
]

é;l’mi[F(xf) - F(xi~1)]-
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It is evident that
8 < 8. for all n.

The sequence {S.} decreases with increasing n. For, let the interval
[0, 1] be divided into n parts. To obtain a division of the interval [0, 1]

1
T

Xl‘

T
B

%o Xy Xi-q

into » + 1 parts let us introduce one more division point, Z, say it falls
between z; and z;_1,1.e., 2,3 < T < ;.

Define
M, = max P(x) < M,
F<Lz <zi
M;= max P(z) < M,
zi1 <z <ZT
Then

n+1
Sn+1 = 1‘§1 Mi[F(xi) - F(xi—l)]’
Sn = a1 = Mi[F(z:) — F(zi1)] — MJ{F(E) — F(z:1)]
— M‘L[F(xl) - F(E)]
> M[F(z)) — F(xi) — F(@) + F(zie) — F(z:)) + F(@)]

Thus
Sn ._>_ Sn+1-

The sequence {s,} increases with increasing n. For, let us make a
similar division of the interval [0, 1] as in the previous case and define

m; = min P(x) > m;,

E<z <zi

ms min P(z) > m.
zin1 <z <T

Then
n+1
Sny1 = '21 mi[F(x:) — F(z:)],

Supt — 8n = TL[F(z) — F@)] + mdF&) — F(2i1)]
— mi[F(x;) — F(xia)]

> miF(z:) — F@@) + F@) — F(ziy) — F(z:) + F(ri)] = 0.

Therefore
Sn+1 Z Sn.
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Combining the inequalities on s, and S, we have
8n < 8np1 S Son < S, <8
or < 8 for all n.

Therefore the increasing sequence {s.} is bounded. Hence it has a limit.

Let this limit be defined by
s = lim s,

n—w

A—0

where A is the length of the largest of the n intervals.

We also have
Sni1 2 Snq1 2 Sa > S1

The decreasing sequence {S.} has a greatest lower bound
S = lim 8.

n-—>8
A—0

Since P is continuous over the closed interval [0, 1], it is uniformly
continuous. Hence corresponding to any positive number e, there exists a
positive number & such that if |21 — 2| < & then

IP(Zl) bl P(Zz)! < e
This means that if A < & then [M; — my| < efor k =1,2,...,n. Thus

0 < Sp— 8 = ﬁl (M — m)[F(z:) — F@i)]

<e3 [Fl) — Fan)] =«
‘We have then
0< S —8n=(Sn=S) + (S — 8+ (s—sa) < e

Each of the three terms in the parentheses is > 0. Since e can be made
arbitrarily small, it follows that each of the three terms must approach 0
in the limit, and

8 =s.

Now for any choice of the z;’s we have

s, < p3 P(zl)[F(x,) - F(fl?z—l)} < Sa.
Since
lim s, = lim S,

n—wo n—row

it follows that
lim 2 P(Zw) [F(x,) - F(x,‘..1)] =8

n—o

A—0

exists and is independent of the choice of the z/’s.
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6. STIELTJES INTEGRAL AND RIEMANN INTEGRAL

In some cases a Stieltjes integral may be evaluated like the ordinary,
or Riemann, integral. In particular, if

[) ' P(z) dF (z)
exists and if F has a derivative F’ at every point in [0, 1] then we have
1 1
ﬁ) P(z) dF (z) = ﬁ) P(z)F'(z) dz.

Hence, in this case, we can evaluate the Stieltjes integral, if it exists, by
evaluating a well-known Riemann integral, if it exists.

Let the interval [0,1] be divided into n parts by the points
0=20<x <2 <...<z, =1 Let A be the length of the largest in-
terval. Since F has a derivative everywhere, there exist y; where z,; <
y; <z (z=1,2,...,n) such that

(69) F(x,-) - F(Ii_l) == F’(yi) (xi - x,'_1).

Now if the Riemann integral ﬁ) ' P(z)F'(z) dx exists it is defined by

6.10)  lm 3 P@IF @)@ — 20) = [; POF (@) do
A0

independent of the choice of the y./s. Substituting (6.9) into (6.10) we get

6.11) lim _f\_:lp(y,-)[zr(x,-) — Flzin)] = [)l PP (z) dz
aA—0

where the left side of (6.11) is independent of the choice of the y,’s. But
the left side of (6.11) is the definition of the Stieltjes integral. Hence
we have

ﬁ) ' P@) dF (@) = fo ' P(@)F () da.

7. STIELTIES INTEGRAL WITH RESPECT TO A STEP-FUNCTION

If F(x) is a step-function, or
F(x) = L(2),

and if P(x) is continuous at «, then

ﬁ) ' P() dI.(2) = P(q).
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The result above follows from the continuity of P(z) at £ = a. Let
the points of divisionof [0,1] be0 =z <31 <22 < ... < 2, = L. Let
Tia < a < Z;. Then

F(z;) — Fzj) =1 for i = j,
F(z:) — F(zied) = 0 for ¢ # j.
Therefore

iEIP(Zi)[F(xf) — F(zia)] = P(z))
where ;.1 < z; < ;. But from the continuity of P(2) at z = a, we have

that
lim P(z;) = P(a).

n—rw

A—0
Therefore
(6.12) lim él P@)[F(z) — F(zia)] = P(a)
A—Q

independent of the choice of the z;’s. The left side of (6.12) is the definition
of a Stieltjes integral, hence

[, P@) dL(z) = P(a).
Using a similar argument we can show that if

F(z) = ailn(z) + aolo(z) + . . . + anla(2)

where a; >0, ¥ a; =1, 0 < a; <1, and if P(z) is continuous at the
i=1

n values, ay, o, . . ., o, then

ﬁ) ' P() dF(z) = mP(ar) + aP(as) + - . . + auPem).

8. SOME PROPERTIES OF STIELTJES INTEGRAL

If the integrals involved exist, it can be readily shown that they have
the following properties:

O [, P@ dF@ = [ P@ dF@) + [ P@) dF ().

@ ['P@ + Q@] dF@ = [ P@) dF@ + [ Q) dF ().
(iit) ﬂ) ' P@) d[kF ()] = k L ' P(2) dF(z).

) | ' P(z) d[F(z) + G(z)] = ﬁ) ' Pe) dF(z) + ﬁ] ' P(2) dG(x).
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) ﬁ) ' dF(z) = F(1) — F(0) = L.
o ] ' P(z) dF (@) = P)F(1) — P(O)F(0) — A ' F(z) dP(@).
i) | [ P@) dF @) < [ 1P()] dF (z).
(viii) If P(z) < Q(z) in [0, 1] then
J, P@ aF@) < [ Q) aF ).



7 SOLUTION OF
INFINITE GAMES

1. OPTIMAL MIXED STRATEGY

Suppose that the payoff function is M(z, y), and suppose Blue chooses
his strategy x from [0, 1] using the distribution function F(z). Then for
any strategy y chosen by Red, the expectation of Blue, if it exists, is
given by

E(F,y) = [, M(z,y) dF ().

Now suppose that Red chooses y by means of the distribution function
G(y); then the expectation of Blue, if it exists, will be

EF,6) = [ [ M, y) dF () dG(y).

E(F, @) is Blue’s expectation if he plays a strategy determined by the
distribution function F(z) and Red plays a strategy determined by the
distribution function G(y).

Suppose the following two expressions exist:

max min E(F, @) = v,
F @

min max E(F, G) = v,.
G F

Then there exists a distribution function F* such that Blue can receive
(in expectation) at least .. There also exists a distribution function G*
such that Blue gets at most v,.

In general, »; < v,. However, if vy = vy, or if

(7.1) max min E(F, G) = min max E(F, @) = v,
F 4@ G F
107
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then we call v the value of the game to Blue. Further, there exists an F*
such that Blue receives at least v regardless of Red’s mixed strategy, i.e.,

min E(F*, @) = v.
G

Therefore

(7.2) E(F*G)>v for all G.
Similarly, there exists a G* such that

(7.3) EF, G <vw for all F.

Thus F*, G* are called optimal mixed strategies for Blue and Red, respec-
tively. The pair F*, G* is also called a solution of the game. We also have

(7.4) E(F*, G*) = v.

2. EXISTENCE OF OPTIMAL STRATEGIES

From the minimax theorem on finite games, it follows that every game
with a finite number of strategies has a solution. However, every infinite
game does not have a solution. There are examples of infinite games which
do not have solutions. However, if the payoff function M (x, y) is contin-
uous in each of the two strategic variables, then it can be proven that the
game always has a solution. Thus if M(z, y) is continuous in z and y,
there exists a pair of distribution functions F*, G*, one for each player
such that

11 .

max ﬁ) ﬁ) M(z, y) dF () dG*(y) = min / f Mz, y) dF*(z) dG(y).

We can also state that F'*, G* is a solution and v is the value of the game,
if and only if

1 L[t
(7.5) maxﬁ) M(z, y) dG*(y) = min ﬁ) Mz, y) dF*(z) = .
z Yy
To prove (7.5), let us first show that if P(z) is continuous, then
max / ' P(z) dF(z) = max P(z).
F 0 z

Since P(z) is continuous on the interval [0, 1], it has a maximum. Let
the maximum occur at a, or

max P(z) = P(a).

Hence
P(a) > P(x) for all z in [0, 1].

For any distribution function F, it follows that

ﬁ) ' Pa) dF (z) > ﬁ) ' P(a) dF (2).
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Hence for any F
P(a) > ﬁ) ' P(z) dF (z).
Let us compute the least upper bound of the numbers
| P@ dF@).
That is, we wish
sup [ P(z) dF (z).
F
Now
1
sup / P(z) dF (z) > / P(z) dI.(z) = P(a).
F 0
But, for any F
P() > ﬁ) ' P(2) dF ().
In particular,
P(a) > sup [ P(x) dF ().
F 0
Hence

sup ﬁ) ' P(z) dF(z) = P(a) = ﬁ) ' P(z) dl(x).

Thus the least upper bound, with respect to F, of the numbers fP(x) dF (x)
is actually assumed at F = I,. Therefore

max f ' P(z) dF(z) = P(a) = max P(z).
F Y z
Similarly, we can show
min f ' P(y) dG(y) = min P(y).
G JO y
Now (7.5) follows from the fact that
1 1 _ 1 1 *
max [ [ M@, ) aF@) da*(y) = [ [max [ MGz, 9) aF@ ] d6*@)
= [ max M(z, y) d6*(v)
= max [ M(z, y) d0*@)

and  min L ' ﬁ) ' M(z, ) dG(y) dF*(z) = min ﬁ) ' Mz, y) dF*(x).

3. PROPERTIES OF OPTIMAL STRATEGIES

Let H*(z) be Blue’s expectation if he uses a pure strategy = and Red
uses an optimal strategy G*(y), i.e.,
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H*@) = [ M(z, 1) dG*(w).

Similarly, let K*(y) be Blue’s expectation if Red uses a pure strategy y
and Blue uses an optimal strategy F*, i.e.,

K*@) = [ M@, y) dF*@).

The following properties are readily proven:

(1) H*(z) < v < K*(y) for all z and y in [0, 1]. Each pure strategy
when used against an opponent’s optimal mixed strategy cannot
yield a higher expectation than an optimal strategy.

(ii) max H*(z) = mm K*(y) = »v. Each player has at least one pure

strategy which, 1f used against an opponent’s optimal strategy,
yields the value of the game.

(i) If H*(zy) < v then pr {£ = 2} = 0. A player’s optimal mixed
strategy contains no strategy which yields less than the value of
the game when that strategy is used against the opponent’s
optimal strategy. If K*(y) > » then pr {£ = y,} = 0.

(iv) If pr {¢ = z,} > 0 then H*(x;) = v. Each pure strategy in the
mixed strategy must yield the value of the game when used against
the opponent’s optimal mixed strategy.

Ezample. Suppose the payoff is given by
- M@y = -yt
Let us verify that the optimal strategy for Blue is to play z = O and z = 1

at random with equal probability and the optimal strategy for Red is to
play ¥y = . We wish to verify that

F*(z) = 3lo(2) + 30(z), G*(»)

Evaluating, we have

L2(y)-

max [, M, y) d6*(y) = max M(z, 3)

i

=max & — }? =
x

min ' M(z, 4) dF*(z) = min [(1M(0, ) + $M(1, )]

= min [y + 3(1 - 9)7] = %
Yy

Since

max [[* M(z,y) d@*() = min [ M(z,y) dF*@) = 4,

it follows that F*, G* as defined above are optimal strategies and v = 1.



SOLUTION . OF INFINITE Games 111

We also have, for this game, that
1
H*@) = [ M, y) d0*@) = @ = 9

K*y) = [} Mz, y) dF*@) = 3l + (1 = 9)7)

Further
max H*(z) = H*(0) = H*(1) = .
" min K*() = K*@) = 1
‘ H*(zx) < % forall z 0,1
) > % for all y = 3.

If ¢ is the random variable selected by the optimal mixture, note that

for Blue: pr{#0,1} =0,

for Red: pr {¢ # 3} = 0.

Ezxample. We now give an example of 2 game which has a continuous
solution. Suppose the payoff is given by

M@z,y) =ly — =l QA — |y — 2.

Let us verify that a solution of this game is F*(z) = z and G*(y) = y.
We have

H @) = [ M@,y de*) = [[ v =2l (0= ly — 2D dy
= Lio(x——x2+2xy—y—y2)dy

+ [Tyt 2y - —a)dy =}

y=z

E*y) = [} M(z,y) dF*(@)

1
= [lly—al @y~ dz =14
Since
H*(z) = 1 = K*(y) for all z and y

it follows that F*(z) = =, G*(y) = y are optimal strategies and v = 3.

4. DELAYED FIRING

An example of a game with a discontinuous payoft which has a solution
is the operational problem of scheduling the firing of a missile requiring
an exposure time. Suppose that Blue plans to fire one missile before T
hours have expired. However, in order to fire the missile, Blue must ex-
pose it for e hours, where ¢ < 7', during which time the missile is vulnerable
to attack by Red. Let us assume that Red, not knowing Blue’s decision,
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has only one opportunity to attack. When is the optimal time for Blue to
expose his missile? When is the optimal time for Red to attack?

A strategy for Blue is a choice of time X for him to begin exposing the
missile for a time e, where 0 < X < T — e. Since Red does not know
Blue’s choice, a strategy for Red is a choice of time Y for Red to attack
Blue, where 0 < Y < 7. Blue will fire his missile at time X +4- ¢ if he
has not been attacked by Red during the time of missile exposure. That
is, if Red attacks either before or after missile exposure, Blue will be able
to fire his missile.

Let the payoff to Blue be 1 if he fires the missile (i.e., Blue’s missile
was not attacked during exposure) and 0 otherwise. Then in terms of the
strategies of the players the payoff is described by the following

discontinuous payoff function:
1 Y <X<T—-—¢ceorX+e<YLT
0 otherwise.

mxm={

Lett = ¢/T,xz = X/T,andy = Y/T; then Blue’s strategies now range
over the interval [0, 1 — ¢] and Red’s strategies now range over the interval

[0, 1]. The payoff function becomes
1 fy<z<l—-torz+t<y<1
0 otherwise.

(7.6) M(z,y) = {

Let us assume that ¢ < 4; then it is readily shown that

0 = sup inf M(zx,y) < inf sup M(z,y) = 1.
z v Yy x

Hence if a solution exists it must be in terms of mixed strategies. Let F(x)
and G(y) be mixed strategies of Blue and Red, respectively. The expected
payoff to Blue is

EF Q) = [ [ M,y d6) dF @)
@.7) = [T [ 6w ar@ + [T [, 46@) dF@
= [, 6@ + 1 - G + 0] dF @).

Using (7.7), we have
inf sup E(F, @) = inf sup [G(x)+1— Gz + )]
G F G 0<z<i—t

1—sup inf [Glx+1t)— G@)].
G o

<z <l—t
Now let
a(@ = inf [Glzx+1t) — Q@)
0<z<1—¢
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Then, for all z, we have

(@) <G+ 1) — Ga)

or Gz + t) > G(x) + «(G) foral0 <21~
Setting z = 0,1, 2¢,. .., (n — 1)t, we obtain
G(t) 2 a(G)

G2t > G1) + «(G) 2 2a(6G)
G(3t) > 3a(@)

G(nt) 2 na(@),
where nt < 1 < (n + 1)t, i.e., n = [1/t] or the largest integer contained
in 1/t
Therefore, we have
na(@ < Gnt) <GQ1) =1

and (@) < % for all G.
It follows that
(7.8) sp inf [Glz+0) — G@)] < -

G 0<z<l—t n

We shall show that the equality holds in (7.8). We do this by exhib-
iting a function G which yields the sup. Suppose that 1/¢is an integer, or
nt = 1. If we take G(y) = y, we have

inf [Gz+8)—Gx)]=1¢t =

0Lz <l—t

S|

Therefore
sup inf [G(z + &) — G(z)] =
G =z n
Now suppose that 1/t is not an integer, and let [1/¢{] = n. Consider
the distribution function
1 n
Gly) = 2 Lyt 1 ().
i=1
Then
1 n
Gz +1) - Gl) = z U/mrn@ + ) — Lijn+n(@)].
o

For this function G(y) we have

it [Cl+ 1) — G@)] = =
0<z <1—¢ . n
Hence, we have
. 1 1
sup Oslznsfl_t[G(x +)-G@]=_= i
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Therefore
. 1
1é1f s;lp EF,G)=1-— [1/7]
By a similar argument we can show that
. 1
sgp 12f EF,G@) =1-— [i/d

Therefore the game has a value given by

1

Y=

An optimal strategy for Blue is
1 n-1
F¥(x) = = 3 I;(x).
n j=0

To verify that I* is optimal, we consider two cases. First, suppose = 1/n,
or 1/t is an integer; then

E(F*, Q) = ﬁ) HE@ 41— Glz + )] dFF()
=1 Al“‘ (G + 1) — G(z)] dF*(x)
-1 %Jz;;; ﬁ) He@ + ) — G@)] du(x)
=1~ 156G+ 0 - 6]
i=0
1 1 1
= 1= 500 ~6O] =1~ =1~
Suppose - _}_ ] <t< 71» ; then for all G,

E(F* Q) = [0 THO@) 4 1 — Gz + 1)) dF*(z)

- 273 G+ o — o)

7=0

1 1
n = T

In terms of the original parameters, the solution of the game is
as follows:

1— }2 [Gnt) — GO)] > 1 —

(i) The value of the game = 1 — [—7—,—1/?]-
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(ii) Blue’s optimal strategy is given by

[Tre]—1

F¥X) = ,-Z:o Lie/7(X).

1
[T/e]
(iii) Red’s optimal strategy is given by

G'*(Y) =Y, if T/eis an integer,

G*(Y) = [T/ ]2 E Liyqrse1+1(Y) if T/e is not an integer.

5. EXAMPLE OF GAME WITHOUT SOLUTION

We shall now give an example of a game with a discontinuous payoff
function which does not have a solution, nor a value.

Consider the infinite game in which each player chooses a number in
the closed interval [0, 1]. Let = and y represent the choices by Blue and
Red, respectively. Define the payoff to Blue as follows:

0 for z = y;
M(x,y) =< —1 forxr=1y<l;andz <y <1;
+1 fory=1Lz<l;andy <z <1
The above payoff may be represented as in Fig. 15 on the unit square.
Y
A +
-1
~{
+1
Ficure 15

Let us compute Blue’s expectation E(F,y) if Blue uses the mixed
strategy F' and Red uses the pure strategy y. We have

() if0<y<l,

1 1
E(F,y)

y—0 1-0
oMar=—1 [ ar+1 [ ar —1 [ dF

=—Fly—0)+FQ1-0)—F(@y) —FQ1)+FQ1 —0)
=1+ 2F(1 —-0) — [F(y —0) + F(y)];

1l
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(i) ify = 0,
EF,y) = +1 0:'0" aF —1[" ar
= 2F(1 — 0) — F(1) = 2F(1 — 0) — 1;
i) if y = 1,

EF,y) = +1 /;‘""dF = F(1 — 0).
Since F(y) > F(y — 0), we have from the above that if 0 <y < 1,
E(F,y) < =14 2F(1 —0) — 2F(y — 0)
= —1+42[F(1 — 0) — F(y — 0)].

Therefore, for any F and any ¢, (0 < ¢ < §), there exists a yo such that

E(F,y) < —1+4e
In other words, for any F, there exists a G, namely G = I, (y) such that

EF,G L —-1+e
Therefore

inf B(F,G) < =1+

and sgp ixéf EF,G) < —1+4e

Similarly, we can show that for any G and any ¢, such that (0 < ¢ < 3)
there exists an F such that
EF,G) 2 +1 —e
Therefore
iréf sup EF,G21—e

Thus we have shown that for this game, we have
inf sup E(F, @) > sup inf E(F, G).
G F F @



8 GAMES WITH CONVEX
PAYOFF FUNCTIONS

1. CONVEX PAYOFF FUNCTIONS

For many military and economic games the continuous payoff function
is also convex in one variable. For example, the outcome of many types
of attack-defense games is naturally described by a convex payoff function.
In such cases it is possible to describe the form of the optimal strategies.

A function f is called conver in the interval [0, 1] if, for every A for
which 0 < X < 1, and for every pair of strategies y1, y., we have

fg 4+ (1= Nya] < M) + (1 — Nis).

If the equality never holds for A £ 0, X = 1, we call f strictly convez.
Geometrically, if a function is convex then between any two points of the
graph of the function, the graph never lies above the segment connecting
the two points. The function is strictly convex if the graph of the function
always lies below the line segment. If a convex function is not strictly
convex, its graph consists in part of straight line segments.

Suppose f is a function of n variables; then f is convex if for every pair
of distinct points (yy, ys,...,%.) and (Fy, 7y, .. .,7.) on the interval,
we have ;

fD‘yl + (1 - )\)yly s )>‘yn + (1 - A)_y_ﬂ] < Af(yly .. ')yﬂ)
+ A =M@, -, T

We call f strictly convex if the equality never holds for A 0, x 1.
Suppose f is twice differentiable; then f is also convex in y if

Z—;é >0 for all y.

117
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The function f is strictly convex if

af
dy? >0 for all y.

Let us assume that M(z, y) is strictly convex in y for each z and that
M(z, y) is twice differentiable (with respect to y). Then for any distribu-
tion function F(zx), it follows that the function

K@) = [, M, y) dF @)

2
is also strictly convex. For, if aa?]/\/;f > 0 for all y, then
?K(y) _ [9*M(z, y)
ot = / ol dF(@) > 0.

2. OPTIMAL PURE STRATEGY FOR RED

Let us assume that M(z, y) is strictly convex in y for each z and is
continuous in both variables. Suppose the game has a solution, which will
be verified. Let F*(z) be an optimal strategy for Blue. Then Blue may
announce the choice F*(z) to Red, who will pick some G* such that

[ [ MG, v) dF*@) a6*y) = min [ [ M, 4) dF*@) d6G)

i

=i [ M(z, y) dF*(@)
= min K*(y).

Now K*(y) is strictly convex in y. Hence K*(y) assumes its minimum at
one point. Therefore an optimal strategy for Red is a pure strategy, the
y which minimizes K*(y).

3. VALUE OF GAME IS min max M(x, y)

y x
" Continuing with the assumption that M (z, y) is continuous and strictly
convex in y, we can obtain the value of the game. For any game, its
value is given by

v = 1nin max [ M(z, y) dG(y).
(¢} T

We have shown that Red’s optimal strategy is a pure strategy. Hence we
need consider only those G’s which are one-step distribution functions.
Therefore

v = min max j;l M(z, y) dI,(y) = min max M(zx, y).
¥ z Y z
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4. RED’S OPTIMAL PURE STRATEGY

An optimal strategy y* for Red must be such that
v = min max M(z, y) = max M(z, y*).
Yy x x

Thus y* has the property that it minimizes max M(z, y). From the strict

convexity of M(z, y) it follows that y* is unique.

5. BLUE’S OPTIMAL STRATEGIES

Blue’s optimal strategy may be pure or mixed, depending on the loca-
tion of Red’s optimal strategy. If Red’s optimal strategy is an end: point
of the interval [0, 1], i.e., if y* = 0 or 1, then Blue has a pure strategy.
If Red’s optimal strategy y* is such that 0 < y* < 1, then an optimal
strategy for Blue is to randomize over two values of z.

Let Red’s optimal strategy be an end point of the interval [0, 1], e.g.,
y* = 0. Then

max M (xz, 0) = .

Hence
M(z,0) <v for all .
Let X, be the set of points zp such that ;
M(z,0) = v for all z, in X,.

Then the remaining set of points X of the interval [0, 1] have the property
that
Mz, 0) <vwv for all x; in X;.

Now an optimal strategy for Blue consists of mixing some strategies z,
satisfying the condition M (zy, 0) = ». We shall show that there exists an
optimal pure strategy for Blue, i.e., there exists some 2, such that
M (o, y) > v forall y. This is equivalent to showing that there exists some
o ¢ Xo such that

v = min M (o, y) = M(x,, 0)
Yy

or that M (x,, ) is a nondecreasing function at y = 0.
Suppose that for every x,¢ X,, the function M(w, y) is decreasing
aty = 0, or

G—M%‘b—@ = M'(2,,0) < 0.

Then for sufficiently small e > 0, and every z, in X,
Mz, y) <wv for0 <y <e
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Since M(x1,y) is continuous in y, it follows that for sufficiently small
e > 0, and every z; in X,

M@z, y) <v for0 <y <e
Therefore, for every « in [0, 1],
M@,y <v O<m<e
Hence
max M(z, y1) <v O<yi<e

This yields the contradiction
v = min max M(z, y) < max M(z, 1) <.
z

v z
It follows that there exists some o ¢ Xo such that the function M (zo, y)
is nondecreasing at y = 0, or

M'(zo, 0) 2 0.
Since M (%o, 0) = v and M (%o, y) is convex in y, it follows that
» = min M(xo,y) or Mo, y) 2 v for all y.
Yy
We have shown that if y* = 0, then Blue has an optimal pure strategy
x* satisfying two conditions:
M@*0) = v, M'(z*,0) > 0.

In a similar manner we can show that if y* = 1, then Blue has an
optimal pure strategy z* satisfying two conditions:

M(* 1) = v, M@+ 1) <0.
Now suppose that 0 < y* < 1. Then

Mz, y*) <v for all z.
Let X, be the set for which

M(xo, y*) = v for all x, & X,
and let X, be the set for which

Mz, y*) <v for all z1 ¢ X

Suppose that every z, in X, were such that
M’ (zo, y*) <0;

then we would be led to the same contradiction as for the case y* =
Hence there exists some z§ such that

M, y*) =v, M@t y*) 20.
In a similar manner we can show that there exists some 28 such that
M(x&); y*) =0, M,(xEO; y*) S 0.
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Now consider the function
@) = tM' (x5, y*) + (1 — M (zdo, y*).
We note that .
f(0) = M'(zt, y*) <0,
J(1) = M'(z8, y*) < 0.
Since f is a continuous function of ¢, there exists an «, where 0 < o < 1,
such that
oM’ (a8, y*) + (1 — a)M'(xb, y*) = O.

Having determined 3, %, and « we shall now show that an optimal
strategy for Blue is

F¥x) = al¢(x) + (1 — o)L (z).
We have that

K*y) = [ M(z,y) dF*@) = aM(z3,v) + (1 — &) M (s, y).

Since M (z, y) is convex in y, it follows that K*(y) is convex in y. Further
dK*(y)
dy
which vanishes at y = y*. Hence K*(y) assumes its minimum at y*, or
II;in K*(y) = aM(zt, y*) + (1 — a)M(zk, y*) = ».

= aM'(z3, y) + (1 — ) M’ (zfo, y)

Therefore F*(z) is an optimal strategy for Blue.
We have shown that if 0 < y* < 1, then an optimal strategy for Blue
is the step-function
FXz) = al,(z) + (1 — a)I,(x)
where
Mz, y*) = M(zs, y*) = v,
M’ (2, y*) 2 0 > M'(2s, y*),

aM’(, y*) + (1 — &) M’ (3, y*) = 0.

6. CONCAVE PAYOFF FUNCTIONS

The following dual result for concave payoff functions can be proven
in the same way as for convex functions:

Suppose that M(z, y) is continuous in both variables and is a strictly
concave function of z for each y. Let dM (z, y)/dx exist for each z and y
in the unit interval. The solution of the game is as follows:

(i) v = max min M(z, y).
z Yy

(ii) Blue has a unique optimal pure strategy z*.
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(iii) (a) If z* = 0, then Red has an optimal pure strategy y* such that
M, y*) = vand dM(0, y*)/dx < 0.
(b) If z* = 1, then Red has an optimal pure strategy y*such that
M, y*) =vand dM(1, y*)/dz > 0.
(¢) If 0 < z* < 1, then Red has an optimal mixed strategy which
is of the form

G*(y) = al,fy) + (1 — )1y (y)
where the parameters a, y1, y» satisfy the conditions
M((E*, yl) = M(SC*, y2) =V,

6M(x*, yl) <0< 6]‘4(]3*, yZ)’
ox - - ax
*
6M(g , Y1) + (1 - a) aM(;sz Y2) -0

7. GENERAL CONVEX PAYOFF

In the previous discussion we assumed that the payoff was strictly
convex or strictly concave. Most of the results are still valid if the strict-
ness assumption is removed. However, it is no longer true that the optimal
strategies are unique.

Although we have assumed that each player’s strategy space is one-
dimensional, similar arguments would prove analogous results for
n~-dimensional strategy space.

Example. Suppose the payoff function is
M(z,y) = (x — )
*M(z, y)
a2y2
it follows that M(z, y) is convex in y for each . Hence the value of the
game is

Since
= 2,

v = minmax (z — y)? = mm max [y%, (1 — 9% = .

Yy z
Red’s optimal strategy is defined by that pure strategy which minimizes
max [y2(1 — y)?]. Therefore y* = %. Blue’s optimal strategy is a mix-
ture of those pure strategies z;such that M(x;, 3) = v, or (z — =1
This yields z = 0 and 1. To obtain the weights « and 1 — a, we solve
the equation '

aM’(0,3) + (1 — a)M’(1,3) = 0.

Substituting, we obtain « = %. Therefore Blue’s optimal strategy is

F*(x) = 3o(x) 4 311(2).
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8. DEFENSE OF TWO TARGETS AGAINST ATTACK

Suppose that Red, the Defender, has two targets T; and T of values
ki and ks, respectively, which are to be defended against an attack by Blue.
Let us assume Red and Blue are equally strong, i.e., they have the same
number of forces, S.

A strategy for Blue is an allocation of z attacking units to 7, where
0 <z <S8, and the remainder, S — z, to 7. A strategy for Red is an
allocation of y to Ty, where 0 <y < S, and 8§ — y to T,

Target T, Target T,

Value IC] k2
Offense allocation z S—=z
Defense allocation Y S—y

Let the payoff to Blue be proportional to the number of attacking units
that get through to target and the target value. Thus if x > y, then
S — 2 < 8 — y, in which case we assume that z — ¥ units survive to hit
target 71 and none survive to hit target 7, In this case the payoff to the
attackiski(z — y). If ¢ < ythen S —z > 8 — y, and Y —  units survive
to attack target 7, while none survive to hit target T'1. The payoff can
be summarized as follows:

kx—y) if 2>y

M@ v ={k2(y—x) if z<y.

One may interpret k: to be the payoff per attacking unit that penetrates
the defenses at 7).

It is evident that M (z, 3) is a convex function of y for each z. It consists
of two lines as shown in Fig. 16. Therefore

v = min max M(z, y) = min max [ksy, ©:(S — )]
y z y .

A
Mixy)

kyx

X S
Fraure 16
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Now the function
max [kay, k(S — 9)]

assumes its minimum at that y for which
kS
by + ks

i ﬁi kzs defense units to

S defense units, to T..

ky = k(S —y) or y*=

Therefore Red’s optimal strategy is to allocate

ks
"k A+ ke
The value of the game is

T, and the remainder

__kik,
v = —————kl T S.

Solving for Blue’s optimal strategy, we set

kS
M (:v, it k2) = .
This equation yields two solutions:
r = 0, T = S

Now
MOy _,  MES )
dy 2, ay 1.
Hence
F*(x) = ado(z) + (1 — a)Is(2)
where
k(L= )(~k) =0 or a=

We summarize the solution of this game as follows: The Defender
splits his forces and may adopt a fixed deployment of such forces—place
ki/(ky + k2) of them at T and ks/(ky + ks) of them at T,. The Attacker’s
optimal strategy is mixed. The Attacker concentrates his forces on either
T, or T; chosen at random. He chooses T with probability ko/ (k1 + ko)
and he chooses T» with probability &1/ (k1 + k).

For example, if target T’ is three times as valuable as target Ty, or
ke = 3k, then T is defended by three-fourths of the defensive force. The
optimal strategy for the Attacker is to strike T with all his forces with
0.75 probability.

9. DEFENSE OF MANY TARGETS OF DIFFERENT VALUES

An example of the application of the results on an n-dimensional con-
vex payoff function is a simple air defense problem. Like most battle
situations, the combat between air attack and air defense can be viewed as
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a zero-sum two-person game: The attacker seeks the greatest possible
gains in the form of the destruction of targets, and the defender wishes to
make these gains as small as possible.

An important decision of the defender in a battle situation is the dis-
tribution of his total defense resources among his targets. An important
decision of the attacker is the distribution of his total attacking force
among those targets. We shall consider this game in a very simplified
form in which we assume only a single choice for each player, namely,
for the attacker the choice of an allocation of his resources among targets,
and for the defender the choice of an allocation of his resources among
those targets.

We wish to answer such questions as: Should all the targets be de-
fended? If only some of the targets are to be defended, how shall these be
selected? How should the attacker select his targets?

To answer these questions we consider the following game model:

Defense. The defender, Red, has D units of defense to distribute among
his n targets, which we label Ty, T, ..., T, Let us assume that the n
targets have values &y, ks, . . ., k,, respectively, and are ordered as follows:

0<k <k <... <ky

Attack. The attacker, Blue, has A units of attack to distribute among

the n targets. Let us assume the attack is at least as strong as the defense,
or A > D.

Strategy. A strategy for Blue is an allocation of his attacking force A
among the n targets. Thus a strategy for Blue is a set of numbers
Ty, s, - - ., L, such that

>0 and 3 z;=A.
;=1

i=

A strategy for Red is a set of numbers 1, s, . . ., ¥» such that
>0 and X y,= D.
i=1

Each y; represents the number of defensive units allocated to target T..

Payoff. Let us assume that one unit of defense can check one unit of
attack. Further, let us assume that the amount of damage to any target
is proportional to the number of attacking units which outnumber the
defending units, the coefficient of proportionality depends on the partic-
ular target. Finally, let us assume that the payoff is the sum, over the
targets, of the damage to each target. Thus the payoff to Blue is

Mz, y) = f:l k:max (0, z; — y:)
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where
n n
2,20, 9,20, T z;,=4, and T y;:= D.
i=1 i=1

Solution. 1t is apparent that M(x, y) is convex in y for each z. It is
also convex in z, for each y. Therefore Red, the defender, has a pure strat-
egy which is optimal. The attacker has a mixed strategy which is optimal.

It can be verified that it is optimal for the defender to distribute his
defensive force D among the high-valued targets. It can also be verified
that it is optimal for the attacker to select one of the high-valued targets
at random, subject to a given probability distribution, and then allocate
his entire attacking force on that target.

To give a more precise description of the optimal strategies for the two
players, we introduce the following notation:

1 |
hs—iik—i’ s=1,2,...,n;
ls=k,—-hs<n—s+1——§)’ s=1,2,...,n;

m = smallest value of s such that I, > 0.
In terms of the above definitions, we can verify the following:
The attacker’s optimal mixed strategy is:
(a) Never attack the low-valued targets Ty, T, . . . , Tt

(b) Use the entire attacking force A on a target selected at random,
subject to the following probability distribution:
pr{xi=A}=Z—'—_'" m<i<n

The defender’s optimal pure strategy is:
(a) Leave undefended the low-valued targets T4, T, . . . , Tpt.
(b) Defend the high-valued targets Tm, Tmi1, - - ., T by placing

B D .
A{I—E(n—m—{-l—A)}’ m<i<mn,

units at the 7th target.
The value of the game to the attacker is
v=Arn — ln).
It is of interest to note that if m < 7 < n, then~

I D
kimax (0, A — y3) =k,~AE(n—m+1 —A)

=h,,A<n—m+1——§—)
= Ay — ln) = v.
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Thus at each of the defended targets, the attacker gets the value of the
game if that target is attacked by the entire attacking force.
If1 <7< m—1, then
Eimax (0,4 — y.) = kA < A(km — 1n).
Thus, at each of the undefended targets, a concentrated attack yields less

than the value of the game. If the defender has allocated his defenses
optimally, there is no soft spot in his targets.

Ezample. Suppose the defender has five targets to defend against an
attack. Let the target values be the following:

ki=+ k=% k=% kh=% k=%
Suppose that the attacker and the defender have equal forces, or
A =D = 8. We have

5
L o - 1249+7+5+4=37,
h Sk
1 4
ll_kl_h1(5—'1+1—l)=12 §i<0
1 5 1
=2 7-=94+74+5+4 =25
he 55 ks
1 3
lz—kz—h2(5—-2+1—-l)~—§—§3<0,
—1“—51'—7-{—5-[—4 16,
hs S5k -
2
la—k3~h3(5—3+1—1)—?—1‘6‘>0

Since I; > 0 and I, < 0, it follows that m = 3. Therefore the optimal
allocations are such that the first two targets are not defended, nor are
they attacked. Targets 3, 4, and 5 are defended as follows:

S {1 - 1 (5 —3+1- 1)} == defense units at target T,

8 {1 ~ 16 (2)} =28 defense units at target T4,
S .

S {1 ~ TR (2)} defense units at target Ts.

The optimal strategy for the attacker is to select one of the three targets

Ts, Ts, or Ts at random and concentrate his attack on that target. The

probabilities associated with these targets are 75, 5, 1&, respectively.
The value of the game is

_ iy oft_1 . 2\_8
v = Akn lm>—s<7 7+16)—8



9 GAMES OF
TIMING—DUELS

1. DUEL AS A GAME OF TIMING

The theory of games may be used to analyze a class of problems dealing
with the timing of decisions in a competitive environment. In these prob-
lems, the actions which the players may take are given in advance, but the
timing of the actions is by the strategic decisions of the players. Such games
are characterized by the following conflict of interests: each player wishes
to delay his decision as long as possible, but he may be penalized for waiting.
In a duel, for example, each duelist wishes to hold his fire as long as possible,
since his accuracy increases with time. However, if the duelist holds his
fire too long, his opponent may win the duel.

Since the duel is a good example of a game of timing, we shall use the duel
with bullets as our model of games of timing. Thus, we shall consider an
action to be the firing of a bullet. The result of the action is given by an
accuracy function representing the probability of hitting the opponent as
a function of time of firing. As in all games, we need to describe the infor-
mation available to the players. If a duelist is informed about his oppo-
nent’s actions as soon as they take place, we shall call the duel a noisy duel.
If neither duelist ever learns when or whether his opponent has fired, we
shall call the duel a silent duel.

2. NOISY DUEL: ONE BULLET EACH DUELIST

Let us first consider the noisy duel in which each duelist has one bullet.
Each duelist is informed of his opponent’s action, firing his bullet, as soon
as it takes place. Further, let us assume that if a duelist fires and misses,
the other duelist can obtain a sure hit by waiting until they are together.
The duelists, starting at a distance D apart, approach each other with no
opportunity for retreat. The accuracies increase steadily as the duelists
approach each other and ultimately are certainty, or 1, when the duelists
are breast to breast.

128
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A strategy for Blue instructs him when to fire his bullet if his opponent
has not already fired; and if the opponent has already fired and missed,
then Blue fires when his accuracy is 1. Thus a strategy for Blue is to fire
his bullet when the duelists are x units apart, where 0 < z < D. Similarly,
a strategy for Red is to fire when the duelists are ¥ units apart, where
0 <y < D. Let the accuracies of Blue and Red be Pi(z) and P(y), re-
spectively. That is, P,(z) is the probability of Blue’s hitting his opponent
if he fires when the duelists are = units apart. Assume the accuracies
increase as the distance decreases.

Let the payoff be 41 to the surviving duelist and 0 to each duelist if
both survive or neither survives. The payoff M(z, y), to Blue, is his ex-
pectation of survival for his three possible ranges of firing times: firing be-
fore Red fires, firing at the same time as Red fires, and firing after Red fires.
Thus the payoff is given by

Pa)(1) + [1 = PA@}(=1) =2Pi(z) =1  ifz>y

_ | Pi@)[1 = Py()] + Pu(2)[1 — Pi(z)](—1)
M@ =" "2 pi@) ~ Pifa) ifz=y

Pyy)(=1) + [1 = P(](1) =1 = 2Py(y)  ify > =

Since Pi(x) and P,(y) increase with decreasing values of = and y,
respectively, it follows that

max min M (z, y) = max min [2P;(x) — 1, Pi(z) — Ps(x), 1 — 2P:(x)].
z y z

Now divide the interval [0, D] into three intervals as follows:

Consists of those

Interval x for which
A Py(z) + Py(z) > 1
B Pi(x) 4+ Py(x) = 1
C Py(z) + Ps(z) <1
These intervals are not vacuous.
Let
p(x) = min [2P1(x) — 1, Pi(z) — Pa(z), 1 — 2Py(x)].
Then

max min M(z, y) = max p(z) = max [max u(x), max u(z), max u(z)].
E v z, : zeA zeB xeC

Now for all z in A, we have
Py(z) + Py(x) 2 1,
from which it follows that
1 — 2Py(z) < Pi(2) — Ps(x) < 2Py(2) — 1.

Therefore if x ¢ A, then
u(@) = 1 — 2Py(x).
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In interval B, which is a point, we have
It follows that
1 — 2Py(x) = Pi(x) — Po(x) = 2Pi(zx) — 1.
Therefore if z ¢ B, then
u(x) = Pi(x) — Py().
Interval C is defined by those z for which

Py(z) + Py(x) < 1.
It follows that
2P\(x) — 1 £ Pi(z) — Pa(x) < 1 — 2Py(x).
Therefore, for all z in C,
‘ p(x) = 2P1(x) — 1.
Let z* be defined by
Py(z*) + Po(z*) = 1.
It follows that
mazx w(@) =1 — 2Py(z*),

max p(x) = Pi(x*) — Pa(z*),

max u(z) = 2Py (z*) — 1.
zeC
Therefore, we have
max min M (z, y) = Pi(z*) — Piy(z*)
z Yy

where z* satisfies the equation
Py(z*) + Py(z*) = 1.
In a similar manner we can show that
min max M (z, y) = P.i(y*) — P:(y*)

¥ z

where y* satisfies the equation
Piy(y*) + Po(y*) = 1.

We have thus shown that M(z, y) has a saddle-point at «*, y*. The
optimal strategy for each player is to fire when he is at a distance ! from
his opponent given by

Py(D) + P(I) = 1.

The value of the game is P,(l) — P.(l).

Summary of solution. The optimal strategy for the duelists is to fire
their bullets simultaneously at a distance xo which satisfies the equation

P](xo) + Pg(ﬂ?o) = 1
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If Blue uses this strategy, then he is sure of receiving at least
Pi(xo) — Pa(xo). If Red uses this strategy, he will lose at most
Pl(ivo) - Pz(xo).

Example. Suppose that Blue’s accuracy is given by Py(z) = 1 — z and
Red’s accuracy is given by Py(y) = 1 — 3% Then each duelist should fire
his bullet at distance x determined by

z+22=1

or z = 0.62. The value of this duel is 22 — £ = —0.24 to Blue and +0.24
to Red.

If the two duelists have the same accuracies, then they should fire when
their accuracies are 0.5. The value of this duel game is zero.

3. NOISY DUEL: ONE BULLET EACH DUELIST, WITHOUT SADDLE-POINT

In the previous section we discussed a noisy duel which had a saddle-
point for its solution, i.e., each player had an optimal pure strategy. The
existence of the saddle-point depends largely on the assumption that the
duelists have equal worths. In particular we assumed a payoff of one unit
to the surviving duelist, whether he be Blue or Red. If the payoff to the
surviving duelist depends on which duelist survives, then the resulting
duel does not have a saddle-point. A duel between a bomber and a fighter,
where the bomber is worth more than the fighter, is an example of a duel
with unequal worths.

Let us assume, as before, that the two duelists approach each other.
Their accuracies are Pi(x) and Pa(y), respectively. We assume that the
duel is noisy, i.e., if a duelist misses, his opponent is certain of a hit. Let
us assume the following payoff to Blue:

«a, if Blue alone survives,

B, if Red alone survives,

7, if neither Blue nor Red survives,

0, if both Blue and Red survive.

It is reasonable to assume that « > 8.
Let a strategy for each duelist be a time to fire if his opponent has not

fired, and to fire at the time when his accuracy is 1 if his opponent has fired
and missed. If z and y are strategies of Blue and Red, respectively, then
the payoff to Blue is:

(e — B)P:(x) + 8 ifr <y,
M(z,y) = 1 aPy(z) + BPs(z) + (v — B — a)Pi(2)Py(x)  ifz =y,
a — (@ — B)P(y) ifz>y.

In order to determine whether the game has a saddle-point, it is nec-
essary to evaluate max min M(z, ) and min max M(z, y). From the fact
z ¥ Yy z
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that P;(z) and P(y) are monotonic increasing functions, it follows that
max min M(z, y) = max min [(a — B)Pi(x) + 8, aP1(z) + BP:(x)
z v z
+ (7 - B - a)Pl(Z)Pi’(x)) a — (a - ﬁ)Pz(I)],
min max M(z, y) = min max [(«¢ — 8)Pi(y) + B, aP(y) + BPx(y)
) x Yy
+ (v — 8 — )Pi()Pa(y), a — (a — B)Pa(y)].
The functions (« — B)Pi{(z) 4+ B8 and ¢ — (a — B)Ps(x) are monotonic
increasing and monotonic decreasing, respectively, having a common value
20 = (a — B)Pi(xe) + B = a — (a — B)P2(xv)
for some x, for which Py(x) + Pa(xo) = 1. Suppose that (y — 8 — a) > 0.
Then
aPl(xo) + 6P2(Zo) + (“,’ —_ ﬁ - a)Pl(xo)Pz(xo) > 29.
Therefore,

max min M(z,y) = 2, and min max M (z,y) > 2.
z v Yy z
Thus, if (y — 8 — @) > 0, the game does not have a saddle-point, and
therefore no pure strategy solution for both sides.
If (y — 8 — a) <0, then it follows that

min max M(z, y) = zo, max min M (z, y) < 2z,
Yy z z y

and the game again does not have pure strategy solutions.
The graph in Fig. 17 illustrates that M (z, y) does not have a saddle-
point. We assume that y — 8 — @ > 0. The point P is defined by

_a={a-B1A{x)

a-B1A(x+8

—— s — — —

~—a AN+ BPx)+(y-B-0)5(x)Aix)

Figure 17
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Py(z) + Ps(x) = 1 and gives the max min M(z, y). The point @ which
cannot coincide with point P yields the rmn max Mz, y).

In the special case wherey — 8 — o = 0 the game does have a saddle-
point at z, satisfying Pi(xy) + Pa(xs) = 1. This case was considered in the
last section.

We summarize, without proof, the results of this type of duel. If the
worths are such that (y — 8 — &) > 0, then the game has a value which
is given by '

v = (a — B)P:i(zo) + B,
where z, is such that
Py(x) + Pa(wo) = 1.

Blue has an optimal pure strategy

F*(z) = L,(2).
However, Red has no optimal strategy. He wishes to play a pure
strategy as close as possible to z, but not equal to .

If the worths are such that (y — 8 — @) < 0, then Red has an optimal
pure strategy and Blue has no optimal strategy.

4. NOISY DUEL: MANY BULLETS, EQUAL ACCURACIES

If the duelists have more than one bullet each, and if we assume that
the worths of the duelists are the same, namely, 41 to the surviving duelist
and O otherwise, then it is relatively easy to compute the optimal strategy.
Suppose that at time ¢, Blue and Red have m(¢) and n(f) bullets, respec-
tively, and equal accuracy functions, p(f). An optimal strategy for either
player is to fire one bullet whenever

1

PO = S+ )
However, the duelist with fewer bullets, at any such time, should not
fire until
1
PO > 0® Fn®
That is, he should hold his fire momentarily and then shoot only if his
opponent did not shoot. The value of the game is

= m(0) — n(0),
- m(0) + n(0)

For example, if Blue has two bullets and Red has three bullets and
both players use their optimal strategies, then Red fires when the accuracy
p(t) = %, both fire at p(f) = %, and both fire at p(f) = }, and v = —% to
Blue. In particular, if p(¢) = ¢, then Red fires at t = 1, both fire at ¢ = },
and both fireat ¢ = 1.
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5. NOISY DUEL: ONE BULLET, ARBITRARY ACCURACIES

Up to this point we have assumed that the accuracies of the duelists
increase with time, and approach certainty. We now drop this restriction.
Assume that the accuracies p:(f), pe(f) at time ¢ > 0 are continuous func-
tions, not necessarily monotonic, and that pi(f) = ps(t) = C for all ¢ larger
than some #. We summarize without proof the optimal strategies of the
duelists. If Blue fires at £, and misses, Red fires at £ for which py(f) is a
maximum in the interval ¢, &. For a pair of strategies (i1, ;), the payoff
to Blue is

HT) = p(T) — [1 = pu(T)]ma(T) if i <ty
g(T) = —pAT) + [1 — po(T)]m(T) if & < 1y,
h(T) = pl(T) -— pg(T) lf t1 = tz,

where T = min (¢, £}, m(T) = max p(f). Define
¢>T

F(t) = max f(r), and G@) = m<in g(7);
<t T <t
then

(i) If F(¢) and G(¥) intersect first at T > 0, then v = F(Ty) = G(Th).
There exist 4 < Ty and £, < Ty such that f(#) = g(t;) = » and
max (&, 1) = To. Approximately optimal strategies for Blue and
Red are obtained by choosing random times near t; and &, respec-
tively, thus eliminating any effect of the function A(T).

(i) I F(0) > G(0), then » = med {f(0), g(0), h(0)}. If € is a small
positive number chosen at random, the solution (&, &) is (0, €),
(¢, 0), or (0, 0), depending on whether the median is assumed at
f@0), ¢(0), or k(0), respectively.

Example. Suppose £ and the accuracies are

to=‘§‘, C=%7 pl(t)=%—t|7p2(t)=%_l%—tl'
Thisiscase 1,andv = 0, 4 = 0, {, = 2. If the time { = £ has arrived and
Blue has erred by not firing, Red should re-evaluate on the basis of the
new game beginning at { = 2. This duel is Case 2 and its value is —1, &
1
= 3, tl = 054.

6. SILENT DUEL: ONE BULLET EACH DUELIST, EQUAL ACCURACIES

In a silent duel each duelist knows how many bullets the duelists have
at the start of the duel, but each duelist is ignorant of any firing by the
other. Let us assume that each duelist has one bullet at the beginning of
the duel. The duelists approach each other with no opportunity for retreat.
Let us assume that the two duelists have the same accuracy functions;
i.e., if the time of firing is the same, the duelists have the same probability
of a kill.

Since the accuracies increase with time, each duelist wishes to postpone
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firing as long as possible. However, by postponing his firing he also in-
creases the probability of being hit by his opponent. Further, the duel
being silent, he does not know whether his opponent has fired. This-con-
flict of interests may be resolved within the framework of game theory.

Let us assume that the worths of the duelists are the same, and assign
to Blue the following values to the possible outcome:

+1, if Blue only survives,

—1, if Red only survives,

0, if both survive or neither survives.

Suppose that Blue fires when his accuracy is « and that Red fires when

his accuracy is y, where 0 < z < 1,0 < y < 1; then the payoff to Blue is

z4+ 1 —2y(=)=—-y+1+yz ifz<y,
9.1) M@E,y)=1z0-—2)+z(1—2)(—1)=0 ifz =y,
y~-D+ 0 —pz=—-y+ 1 -9z fy<az
We find that ~
max min M(z, y) = 2V2 — 3,
z Yy
min max M(z,y) = 3 — 2V2.
v z

Therefore the game does not have a saddle-point. Suppose that Blue usesa
mixed strategy F and Red uses a pure strategy y; then Blue’s expectation is

E(F,y) = [ M,y dF@) = [ M, y) dF @)
+ [, M, v) dF@)

[ 1=y + (U + el dF @)
+ [ =y + (1 - y)e] dF ()

—yFy =0 + (1 +9) [ 2 dF@) =y + yF(y + 0)
+a-y [ 2dF@
yIF@) — Fly — 0] —y+ (L +9) [ 2 dF @)
+a -y 2dF@).

Suppose that the mixed strategy F is a density function over the interval
(o, 1), 0r,i.e.,dF(z) = P(z) dzif« < z < land dF(z) = 0if £ < . Then

—y+ A+ [[aP@) do
(9.3) BF,y) =1 +0-9) [ 2P@de  ify>a

(9.2)

i

I

—y+ (- [(2P@dz iy <a
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Since the game is symmetric, the value of the game is zero. It follows
that, if the game has a density function P for a solution, then for all y for
which P(y) # 0, E(F,y) = v = 0. Hence, if the game has a density
function for a solution, we must have

©94) —y+ (14 L” 2P(z) dz + (1 — 3) L‘ 2P(z) dz = 0,

independent of y.
Differentiating the preceding expression twice with respeet to v,

we obtain
3P(y) + yP'(y) = 0.

Now, solving this differential equation, we get

C
(9.5) P(y) = )
By substituting (9.5) into (9.4), we have
d d
—y+@+yc [T+ -y [[F -0

Hence

Il
k=)

—v+ca+o(i-3)+oa-n(i-1)

independent of y for « < y < 1. This yields

—_ 1 — 1
a——g,C—z.

Now we shall show that an optimal strategy for Blue and Red is to
fire when the accuracy is z with the density function P(2) = 1/42® where
3 < 2z <1 and not to fire before z = 1. Suppose Blue uses this strategy;
then for + < y < 1, we have

+(1+y) vdr (1 —y) ride

E(F*y) = — 4 1/3 &2 T 4 v z2 0.
For y < %, we have
% (1“?/) 1 dx
E(f*y) = —y+——4—~f1/3x—z
3 1

Therefore the optimal strategy for Blue and Red is the following
mixed strategy:

F*@) = 0 1f0<x<§
1 1
=8<9_x2) f-<z<1
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7. SILENT-NOISY DUEL: ONE BULLET EACH DUELIST

Mixing the duel, i.e., letting one duelist be informed of his opponent’s
firing, if any, yields optimal strategies which are different from the noisy
or silent duels. Suppose that Blue is the silent duelist and that Red is the
noisy duelist. Assume that the two duelists have the same aceuracies.
Then, if z and y are the accuracies at the time of firing for Blue and Red,
respectively, the payoff to Blue is

z—y+ Y forz <y,
M(r,y) =<1—2y for z > y,
0 for x = y.

Let a = V6 — 2; then it can be verified that the value of the game is
v =1 — 2a = 0.101.

It can be verified that Blue, who has a silent bullet, has a unique optimal
strategy, namely, the density function
0 for 0 < z < a,

J@) = V2a
(@2 + 2z — 1)¥2

fora<z< 1

The optimal strategy for Red is also unique and is the same density
#(y) mixed with the pure strategy y = 1 in the ratio 2/a. In terms of a
cumulative distribution function, G(y), the optimal strategy for Red is

60) = 5o [ 10) dy + 51w

8. SILENT DUEL: ONE BULLET VERSUS TWb, EQUAL ACCURACIES

Giving one of the duelists an additional bullet considerably complicates
the solution of the duel, even for the simple case where all accuracies are
equal and monotonically increasing from zero to one. For safest results,
the duelist with two bullets should shoot his two bullets in separate inter-
vals but with a positive probability of saving the second bullet until the
end. The duelist with one bullet defends himself against each of his op-
ponent’s bullets with two different density laws, spending slightly more
than half of his fire-probability on the first.

Let the duelist with one bullet be Blue, who chooses a firing time z,
with 0 < z < 1. Red, who has two.bullets, chooses two firing times, y and
z, with 0 < y < 2 < 1, where the time is identified with accuracy. The
payoff to Blue is



138 caMEs oF TIMING—DUELS
z-—(1—2y—1—-2)1 —y)z forz <y <z
M, y2) =<—y+ A —-9)z—-1—-9y)A - 2)2 fory <z <Le
—y—1—-yz+0—-yA -2z fory<z<uz.
The solution of this duel is long and involved. We shall summarize,
without proof, the optimal strategies in this duel. First, the game has a

value. The duelist with one bullet, Blue, is at a disadvantage and the
value of the duel to him is

v = 2 — 3a
T 2434
= —0.30650.

Blue also has a unique optimal mixed strategy, which is described by the
density function

where @ = V1 + VI = 1.25593,

0 0<z<a,
fy = | Hesz<h,
Lotb<ast,

where the constants are defined by

_.ad=b _ =% 095
b= oy = 0.13805, 1= 1o — = 0.25760,
1 1
— — . = D == 4 41 .
a = 75 = 0.28475, b= 7i 0.46410

If Blue uses this strategy, Red is forced to fire his first bullet between
a and b, and his second bullet after b, if he is to ensure himself the value
of the game. Red should fire his first bullet with probabilities described
by the density function

0 f0<y<Lae
a) = g ifa <y<b,
0 fb<<y<l1,

3
where m = It 6a = 0.26006.

The second bullet should be fired with a combination of a density function
and a single step, as follows:
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0 if0<z<hb,
h(z) = f; b<z< 1,
Y z=1;

v =2— V3 =026795,

3y

n = - = 0.40192.

2

The randomizations on y and z are carried out independently.

Figure 18 shows graphically the optimal strategies of the two duelists.
The duelist with two bullets has a positive probability of saving his second
bullet until the end. This is shown by the area of the wedge at y = 1.0.

w

Firing density, 7{x)

—_—

0

Rate of firing, g(y)

Optimal strategy of duelist
with one bullet

] 1
« 04 b 0.6 0.8 1.0

0.2
Firing time, x
Optimal strategy of duelist
with two bullets
First
bullet
0.2 « 0.4 p

Firing time, y
Fieure 18
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9. SILENT DUEL: POSITIVE INITIAL ACCURACY

Suppose that the two duelists have one silent bullet apiece and that
their accuracies are equal and increase monotonically, but from an initial
value @ > 0 to 1. This situation may arise if neither duelist is permitted
to fire before his accuracy reaches the value a. The introduction of this
constraint modifies the solution of the silent duel. We describe, without
proof, the optimal behavior of the duelists.

Let f(x) = }z?* be the probability density function, which is also the
solution of the silent duel without constraints. The optimal behavior of the
duelists will depend on the size of a, as follows:

() If 0 < a < %, then fire according to the probability density f(x)
in the interval $ < z < 1 and never fire before = 1.

(i) If 3 <a <43, let (b) be the interval in which f(x) has center
of mass at a. Fire after b according to f(x), and concentrate the
remaining firing probability at a.

(iii) If 3 < a < 1, fire always at a.

To illustrate the solution, suppose that a = %, which falls in Case 2.
To determine b, we need to solve the equation

L:ﬁuym=

.ﬁﬂmw

/3

?

O I

where f(z) = }z% This yields b = %. Therefore the optimal strategy for
the duelists is to fire according to the probability density f(z) = 1z? from
z = % to x = 1. This uses up 5 of the firing probability. The remaining
firing probability, %, is concentrated at a = 4.

It will be observed that the average firing accuracy in each of the three
cases above is

max (%, a).

This is exactly the optimal firing time for the associated noisy duel, where
the duelists have equal accuracy functions and may fire after the accuracy
exceeds a.

10. SILENT DUEL: m BULLETS EACH DUELIST

Assume equal monotonic accuracy functions with each duelist having
m bullets. Assume that the duel is silent. Then the optimal strategy is to
fire the (m + 1 — k)th bullet in the interval

1
THr1=Ts

1
2k—1
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according to the inverse cubic law 3kz®. The value of the game is zero.

It is interesting to note that the solution of the noisy duel with many
bullets requires the shooting of the (m <+ k — 1)th bullet at the harmonic
mean, 3k, of the same interval.

11. SILENT DUEL: STRICTLY MONOTONIC ACCURACIES

We now drop the restriction of equal monotonic accuracy functions.
We consider the silent duel in which the accuracies are arbitrary but
strictly monotonic. Each duelist has only one bullet.

Let pi(?) and p.(t) be the probabilities of a hit by Blue and Red,
respectively. Let pi(0) = p2(0) = 0 and pa(1) = 1. Define

B N
0 =sor® 9" noro

Let a; and a; be defined by the following equations:

a1

[L=2Q0 a =1,

ﬁ———L—l — 1 gy dt = 1,

and let
' a = max (a;, az).

We now summarize the optimal strategy in terms of these defined
quantities. The optimal strategy for Blue, whose accuracy function is pi(?),
is to fire his bullet according to the following cumulative distribution
function:

0 for0 <t<a,
{‘ () dt

F(t) = <% fora <t<1,
[ s a
1 fort = 1.

The optimal strategy for Red, whose accuracy function is ps(f), is given
by a similar cumulative distribution function:

0 for0<t<a,

[ gty as
G@) = n fora<t<l,
[ o

1 fort = 1.

In other words, Blue has a jump at 1 if a1 < a.
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The value of the game is
1 — 322(0 if a

_ | 1+ pa) - o
1+ pila) if a = a,.

Ezample. Let Blue have an accuracy function p,(x) = z and Red have
an arbitrary accuracy function p.(z) = p(z). Let a, 8 be the probabilities
that Blue and Red, respectively, fire at the time when their accuracies
are 1. Table 3 summarizes the solution for various forms of p(x).

Table 3. SiLENT DUuErL, MoNOTONIC ACCURACIES

p(z) a ¢ @ 8
z 0.333 0 0 0
2 0.0764
I+ 0.409 0.1021 | 0 .
z(3 — z)
202 — z) 0.372 0.0838 0.0063 0
- 0
2z 0.414 0.1720 0
z? 0.481 0.2481 0 0.0729
273
I s— R . 0.1741
P v—— 0.415 0.0280 0

12. SILENT DUEL: CONTINUOUS FIRE

If a duelist is permitted to vary his rate of fire along a continuous scale
between zero and one, then the silent duel with continuous fire has the
property that every mixed strategy is dominated by a pure strategy.

Let R(?) be the rate of fire and A(f) be the accuracy density function,
i.e., the probability of a kill by a unit amount of fire in a unit time at time
t. Then the probability of the opponent’s survival over the interval (0, £) is

PR, 1) = exp {— ! a@R@ du},
where
0SRO<1L, ['RO&E=p<1,

and B is the total amount of ammunition.
If 8 is the set of all strategies R, then a mixed strategy is a distribution
function F where j:g dF(R) = 1. If the duelist is not killed by time ¢, the

probability of his opponent’s survival is

o(F, 1) = [g exp {— L “ AR ) du} dF(R).
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Corresponding to any mixed strategy F, there is a pure strategy
Re = [(RdF(R)

which is uniformly better than F, independent of the opponent’s action.

13. TARGET PREDICTION

A classic military problem is how best to aim at a mobile target which
is deliberately maneuvering so as to confound prediction of its position.
The mobile target may be a ship, plane, or infantryman. Their attacker
may be a bomber, an antiaircraft gun, or a sniper, respectively. In each
case, there is a time lag between the detection of the target and the arrival
of the projectile.

Suppose a battleship in midocean is aware of an enemy bomber’s pres-
ence, but the plane is too high for the battleship to take any offensive
measures against the plane. However, the battleship can maneuver in order
to confound the prediction of its position. The ship is interested only in
not being hit. The plane has one bomb and let us assume that the bomber’s
aim is excellent, but there is a time lag between the release of the bomb
and its detonation. That is, the bomber must aim at an anticipated position
of the ship.

In order to gain insight into this difficult problem it is necessary to
simplify the problem further by assuming the ocean to be one-dimensional
and discrete. Let us assume that the battleship is located on one of a long
row of points and that at each unit of time it moves either one unit to the
left or one unit to the right. Let us assume that the time lag is 2 units or,
what is the same thing, 2 moves. The payoff to the bomber is 1 if he hits
the battleship, and zero otherwise.

A strategy for the battleship will depend on prior moves. Since the
battleship’s course more than two moves ago is known to his opponent,
it is reasonable to suppose that this dependence will not reach very far
back. Let us suppose that the choice depends on the previous move only.
Now suppose that the battleship moves in the opposite direction with
probability z and moves in the same direction with probability 1 — z. At
the end of 2 moves the battleship will be located at one of three positions.
The probabilities associated with these three positions are

(1 —x)?
M=-<z
z(l — z).

From the description of the game it follows that M represents the expected
payoff.
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If we restrict ourselves to these strategies, then an optimal strategy for
the battleship is a choice # which makes the maximum of these three
probabilities a minimum. This occurs at

z= (1~ x)zy

or at
— V5
o -3=Y0

It can be shown that the value of the game is given by z* = (3 — V/5)/2
and that z* is also the optimal strategy for the battleship. Further, this
optimal strategy is unique. On the other hand, it can be shown that the
bomber does not possess an optimal strategy. However, the bomber has
an e-optimal strategy. That is, for any ¢ > 0, there is a mixed strategy for
the bomber which assures him of a hit with probability > z* — ¢,
but no strategy guarantees z*.



1 o TACTICAL
AIR-WAR GAME

1. INTRODUCTION

The problem of optimal employment of tactical air forces in the various
theater air tasks, like many other military questions, can be analyzed as
a multimove game between two sides. In the formulation of the game we
view the tactical air war as consisting of a series of strikes, which are the
moves of the game. Each move is an allocation of resources among
various tasks. Among the usual tasks are the following:

Counter air. These operations are against the enemy’s theater air base
complex and organization in order to destroy his aircraft, personnel,
facilities, ete.

Air defense. These represent air-defense operations against the enemy’s
counter-air operations.

Ground support. The targets for ground-support operations are concen-
trations of enemy troops or fortified positions, attacked in order to help
the ground forces in the battle area. This is accomplished by aerial delivery
of fire power against the enemy ground targets. We also include inter-
diction, reconnaissance, and airlift in this ground-support task.

2. FORMULATION OF TACTICAL GAME

We assume that the tactical air-war game consists of a series of strikes
or moves. Each strike consists of simultaneous counter-air, air-defense, and
ground-support allocation by each side. Let us assume that at the start of
the game Blue has p planes and Red has ¢ planes. Let us look at a strike in
the game, say the initial strike. Suppose that on this strike Blue dispatches

145
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z planes on counter-air operations and w planes on air-defense operations,
and the remaining amount, p — z — w planes, on ground-support, opera-
tions. Similarly, suppose that for his first strike Red allocates y planes to
counter air, w planes to air defense, and the remaining number,q — y — w
planes, to support his ground forces. For this initial strike and for any
future strikes, the above decisions are made by each side in ignorance of
the allocation of the opposing side. It is assumed, however, that each side
knows the number p and q of planes that both have.

Since Red allocates w planes to air defense we can expect a reduction
in the number of Blue’s planes that get through to counter-air targets.
The number of interceptions by Red will be proportional to w, say cw,
unless Blue’s attacking planes are saturated. This proportionality con-
stant, or defense potential, depends on the planes’ characteristics and
flying altitudes, and on their weapons’ characteristics. Hence the number
of Blue attacking planes that penetrate Red’s defenses is z — cw as long
as cw is not larger than z. If cw is larger than z, no Blue aircraft will
penetrate. Therefore the number of Blue attacking planes that penetrate
Red’s defenses is the larger of the two numbers z — cw and 0, or

number Blue planes penetrating = max (0, z — cw).

The objective of Blue’s counter-air operations is to reduce the enemy’s
air force by dropping bombs on certain targets, and the number of air-
craft destroyed will vary with the number of attacking planes that pene-
trate Red’s defenses. Increasing the number of Blue’s penetrating planes
will diminish the enemy’s air force. If we assume that each of Blue’s
penetrating planes can destroy b planes of the enemy, then Blue could
destroy b max (0, z — cw) Red planes, if Red had this number of aircraft
at risk at the time of Blue’s counter-air operations. The proportionality
constant b depends on the target as well as the aircraft characteristics.

Suppose that during this initial strike Red’s air force is increased by s
replacements. Suppose also that of the ¢ planes that Red uses on his
operations, ag of them survive antiaircraft fire and accidents. Now let us
assume that Red has s + aq planes at risk at the time of Blue’s counter-ai
operations. Then we have '

Red planes left = max {0, ag + s — min [s + ag, b max (0, z — cw)]}
(10.1) = max {0, max [0, ag + s — b max (0, x — cw)]}
= max [0, ag + s — bmax (0, z — cw)].

In exactly the same manner we can analyze the effect of the initial
strike on Blue’s inventory. At the end of the initial strike,

(10.2)  Blue planes left = max |0, dp + r — e max 0, y — fu)],
with the constants d, e, f defined similarly to a, b, c, respectively,
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3. PAYOFF OF TACTICAL GAME

Let us look at Blue’s employment of theater air forces during the cam-
paign. We assume that his objective is to assist the ground forces in the
battle area, and the outcome of this assistance will vary with the number
of planes he allocates to ground-support operations. We assume that it is
possible to construct for Blue a payoff function, giving the payoff for each
strike of the campaign, in terms of the distance advanced by the ground
forces which is a function of the number of planes allocated to ground
support. This function depends heavily on the characteristics of the
ground-support targets—i.e., en the degree of concentration of troops,
vehicles, and materiel, and on the fortification of positions.

Now if Blue’s ground forces must advance while being subjected to
Red’s ground-support sorties, Blue’s yield in ground support is reduced in
accordance with the number of planes allocated by Red to close-support
missions. If ¢ — y — w is the function that measures the distance gained
by Red’s ground forces, then the net advance of Blue’s ground forces, if
he allocates p — z — u planes to ground support and Red allocates
g — y — w planes to ground support, can be written as

p—z—u—(g—y—w.
The foregoing expression represents the payoff' to Blue for this one

period or one strike. The payoff for the entire campaign of N strikes is the
sum of these net yields for each of the N strikes, or

(10.3) M=12v:[p—x—u—(q—y—w)]~

The problem faced by each side is now apparent. For example, Blue
would like to allocate a large number of planes to ground-support missions
and thereby increase his payoff at a given move, yet he would like to de-
stroy the Red air force by means of counter-air operations in order to
ensure that ¢ is small, or zero, for subsequent moves. Further, if he does
not provide for air defense he may suffer severe losses to his own air force
if Red elects to mount a large counter-air strike. Each player has to take
into account the future and the possibilities open to his opponent.

4. TWO TASKS—COUNTER AIR AND GROUND SUPPORT

Let us first study the special tactical air war model with two tasks,
counter air and ground support, and omit the air-defense task. This is
equivalent to assuming that the air-defense potentials ¢ and f are zero.
Equations (10.1) and (10.2) now read -
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(10.4) ¢ = max (0, aqg — bzx + ),
(10.5) p1 = max (0,dp — ey + 1),
and the payoff (10.3) reduces to

N
(10.6) M=Z[p—-2—- G-yl

It will be convenient to number the moves from the end of the game—
i.e., the nth move means n moves to the end of the game. The tactical air
war game may now be described as follows. Let p. and ¢, be the forces
possessed by Blue and Red, respectively, and known by both Blue and Red
at the start of a game of n moves. Suppose that at the initial move of this
n-move game Blue allocates z, planes to counter air where z, < p,, and
simultaneously Red allocates ¥, planes to counter air where ¥, < ¢,. Then
the forces possessed by Blue and Red for the (n — 1)-move game are
given by

(10.7) Pn—1 = max (0, dp, — ey, + r,),
(10.8) gn—1 = max (0, aq, — bz, + s,).

Choices .1 and y,—; are then made for this (n — 1)-move game. This
process is continued for the duration of the game of N moves. The payoff
(10.6) now becomes

(10.9) M= ngl [(Pn = Za) = (ga — yw)].

The game as described has a value and optimal strategies. We may
expect the value of the game to depend on the number of moves and the
size of initial forces. Define v:(p;, ¢:) to be the value of the game of ¢ moves
in which Blue has p, forces and Red has ¢, forces at the start of this ¢-move
game. In order to obtain the optimal initial move of an n-move game,
i.e., the optimal values of z, and y.,, it is sufficient to solve the game whose
payoff is given by

(10.10)  Mo(Zny Yn) = Pn — Tn — (@n — Yn) + Va1 (Pat, Gnv),

where p._; and ¢, are given by (10.7) and (10.8), respectively. Equation
(10.10) defines the payoff in a game of where, on the initial move of the
n-move game, Blue chooses z, and Red chooses y., and then both players
play optimally for the remaining (n — 1) moves of the game.

5. OPTIMAL TACTICS FOR TWO TASKS

From (10.10) it is clear that in order to solve the n-move game, we
first need to solve the (n — 1)-move game, which in turn requires a solution
of the (n — 2)-move game, ete. Therefore we shall solve the n-move game
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by starting at the last move of the game and working backwards to the
first move.

Let vo(po, o) = 0. Then from (10.10) we have a one-move game Or
n = 1) k

(10.11) Mz, ) =pr— 21— @1+ Y

Clearly, the optimal values of ; and y; are zf = 0, yt = 0. Blue and Red
should allocate no resources to counter air. That is, the optimal tactics for
Blue and Red on the last move are to allocate all their resources, p: and ¢,
respectively, to ground support. The value of the one-move game is
given by

(10.12) v(p, @) = 11— Q.

Having solved the one-move game, we now proceed to solve the
two-move game. The payoff for n = 2 is given by

(10.13) M(s, y2) = P2 — %2 — g2 + 92 + v:(P1, @)
=p—Ta—Qt+ Y+ n—q

where p; and ¢ satisfy the following equations:

(10.14) -~ p1 = max (0, dp: — eyz + 12),

(10.15) ¢ = max (0, ags — bzs + $2)-

Substituting these values of p; and ¢, into (10.13), we obtain

(10.16)

a2+, S dp2t 1
b —

D2 — @2 — T+ U2 if 22 2> e

Y
(1 + d)pz —VQ2 — T2
4+ y2(1 —e) + 72

M (s, y2) =10+ dp:— A+ a)e
— (A =bz+ (1 —ey: ifr<

2y > ags + s o < dps + 13
= b

- €

aq; + s dps + 1
Q2b 2’y<p2 2

2= e
+ 71— 8
p:— (1 + a)g . ag2+82, >dp2+1‘2.
- Bt pnm s EmST BT

The solution of the above game whose payoff Ms(xs, y2) is defined in
(10.16) will depend on the values of the parameters a, b, d, and e. First,
suppose that b > 1 and e > 1. Then the optimal tactics are easily com-
puted, and are given by

*_ag2+82 ,_d22+7'2'
Tz = b ! Yz = ¢

The value of the game is

d
(10.17) v = (1 + ;)pz - (1 + ;)—l)qz + % - %g
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If b <1lande < 1in (10.16), then the optimal tactics are
x5 = 0, y: = 0.
In this case, the value of the game is
(10.18) ve=(14+d)ps— 1+ a)gza + r2 — s2.

The optimal tactics, 25 and 3, tell Blue and Red how they should
allocate their forces among the two tasks on the next to the last' strike.
Of course, on the last strike of the campaign we have already shown that
Blue and Red should allocate all their forces to ground support.

Having computed the optimal tactics for n = 1 and n = 2, we next
proceed to compute the optimal tactics for n = 3 (three moves to the end
of the game). We set n = 3 in (10.9), which gives us the payoff function

(10.19) Mi(xs, ys) = ps — 23 — g3 + ys3 + v2(pa, g2),

where
p2 = max (0, dps — ey; + r3),
. g2 = max (0, ag; — bxs + s3),

and v(ps, ¢2) is given by (10.17) or (10.18), depending upon the parameters
b and e. Solving the game whose payoff function is defined by (10.19), we
can obtain the optimal tactics for a three-move game and the game value
vs(ps, ga)-

Proceeding in the above manner, we build up the solution of the game
for any number of moves. It turns out that, independent of the parameters,
initial conditions, and size of forces at a given move, both sides have op-
timal pure strategies. Although every strike by a player is made simul-
taneously with his opponent, nevertheless, a player never needs to random-
ize. Thus an optimal strategy for a player can be specified by giving, for
each strike of the campaign, either the number of planes he allocates to
counter-air operations or the number of planes he allocates to ground sup-
port. These optimal allocations depend on the attrition parameters a, b,
d, e, and on the number of strikes remaining in the campaign.

Before we describe the optimal strategies obtained by the above pro-
cedure, let us introduce some notation. From Equation (10.17) it is clear
that if Red had enough forces he could annihilate Blue’s forces by allocating

dpn + Ta

Yn = e

to counter-air operations. Any allocation exceeding this is clearly wasteful.
Thus it is reasonable to call an allocation

dp. + rn)

Yn = min (q,., .
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a concentration on counter air. We shall denote such an allocation by A.
Similarly the allocation by Blue of

Z, = Iin (p,,, %{ﬁ)
is a concentration on counter air by Blue and will also be denoted by A.

If Blue’s allocation to counter air is z, = 0, and therefore all forces p»
are allocated to ground support, we shall denote this tactic by G. Similarly,
if y, = 0, then Red concentrates on ground support, and this is denoted
by G.

Finally, consider an allocation which is neither A nor G. We shall
denote this by the symbol (4,@). In such a tactic a player splits his
forces between counter air and ground support, and does not concentrate
on either task.

The optimal strategies depend on the attrition parameters. Let us first
suppose that

a+b>1 and d+e> 1.

Then it turns out that the optimal strategy for each player requires him
to begin the campaign with a series of allocations A, and to end with a
series of allocations G. The points at which the players shift from 4 to G
will, in general, be different for Red and Blue.

The precise points of shift depend on the magnitudes of the attrition
parameters, in the following manner. Let f be the largest integer for which
the inequality

1 1—-d
e 1—4d >0
holds, and let g be the largest integer for which the inequality
1 1 —aqaf
b 1—a 20

holds. These integers f and g determine the strike at which the shift is made.

The optimal strategies obtained by the method described above are
summarized in Table 4. In this table, the integer ¢ denotes another shift
point which is applicable in cases 2 and 3.

6. OPTIMAL TACTICS FOR THREE TASKS

We now return to the more general model with all three tasks—counter
air, air defense, and ground support—present. We shall see that increasing
the number of air tasks to three leads to substantial changes in the
character of the optimal tactics.

In order to simplify the analysis we assume that Blue and Red have the
same air-defense potential: each plane allocated to defense can prevent one
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Table 4. OpriMAL ArvocaTioN oF ForceEs BETwWEEN Two TASKs

Optimal allocation at move number n

(counting from end of campaign)

Case
No. Range of parameters ~ Player 1<a<min(f4+1L,g+1)|min(f+2,9+2)<n<t|n=t+1|t+2<n<N
1 a+b>lLd+e>1 Blue G G ’ A A
f<g Red G A A A
Blue G A A A
9</ Red G ¢ A A
_ Blue G A A A
§=9 Red G A A A
2 a+b<1l,d+e>1 Blue G G A (A, @
(g = =) Red G A A A
3 a+b2>21,d+ex<1 Blue ¢ A A A
(f = ») Red G el A (4,6
4 a+b<ld+e<1 Blue G G G el
(=g =) Red G G e G




TACTICAL AIR-WAR GaMe 153

attacking plane from reaching the target—that is, we assume that ¢ = f = 1.
We also assume that each attacking plane that penetrates the defense
can destroy one plane in an airfield strike, or b = ¢ = 1, and that losses
due to aborts, accidents, and antiaircraft fire are negligible, or a = d = 1.
Finally, we assume that replacements are absent, i.e.,r = s = 0. Then the
inventory of planes at the end of a strike will be, for Blue and Red,
respectively,

max [0, p — max 0,y — u)],

i

D1
¢ = max [0, ¢ — max (0,2 — w)].

If we derive the optimal strategies in the three-task model we find that
they are different from the two-task model in the following two important
ways: first, the optimal tactics depend upon the relative strengths of the
two sides; second, optimal play requires one player to use a mixed strategy.

The techniques used to derive the optimal tactics are similar to those
used for the two-task model, but are more complicated. We shall omit the
derivation; however, the reader can verify the given results. We shall give
a complete description of the optimal employment of forces in terms of the
number of strikes remaining and the relative strengths of the two sides.
In describing the optimal allocations we shall always assume that at the
move in question Blue is the stronger side, that is to say, p > ¢. This is
merely a convention to facilitate the description of optimal tactics, and is
not meant to imply that the side which is the stronger at a given stage of
the game will always remain the stronger for all subsequent moves. Of
course, if a player is initially stronger and plays optimally, then he will
remain the stronger throughout the game.

First, we give a qualitative description of the optimal strategies:

1. Campaign ends with ground support. The campaign always ends with
a series of strikes on ground support—i.e., during the closing period of the
campaign both Red and Blue concentrate all their forces on ground-support
missions. In this terminal period both sides have the same optimal tactics,
regardless of their resources. If we assume that ¢ = f = b = ¢ = 1, then
this terminal period consists of only the last two strikes of the campaign.

2. Blue (stronger) splits his forces. At all times other than the closing
phase of the campaign, Red and Blue have very different optimal tactics.
During any of these early strikes, the stronger side, say Blue, has a pure
strategy, i.e., there exists a best allocation of Blue’s air force among the
.three air tasks. In this connection, there is a critical value (about 2.7) of
the ratio of the Blue force to the Red force which governs Blue’s allocation
during the early period in the following manner: If the force ratio is less
than this critical value, then the optimal allocation in the early period con-
sists of splitting the stronger force between two tasks, counter air and air
defense, and neglecting the ground-support task. The size of the split de-
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pends on the relative strengths of the two forces and the number of strikes
left in the campaign. However, if Blue’s strength relative to Red’s is
greater than the critical value, then regardless of his strength, Blue should
divide his force in a fixed way among the three tasks, counter air, air
defense, and ground support. The number of aircraft allocated to each
mission, however, is still dependent on the number of strikes remaining,.

3. Red (weaker) mixes his tactics and concentrates his forces. The weaker
combatant cannot use a single strategy, but must bluff during all the strikes
other than those of the terminal phase. Unlike his opponent, the weaker
combatant does not have a single allocation that is best. He must use a
mixed strategy and gamble for high payoffs. If he is not too weak—i.e., if
the force ratio is less than the critical value—then he concentrates his en-
tire force either on counter air or on air defense; but which of these tasks
receives the full effort is decided by some chance device. However, if Red
is very weak (force ratio larger than the critical value), then he allocates
his entire air force to any one of the three air tasks with the particular task
again chosen at random. In other words, if a player is very weak relative
to the opponent, then he takes a chance on an early payoff. Of course, to
be most effective, he must bluff correctly—i.e., the random device should
select the tasks with the proper relative frequencies.

4. Miz and split the same tasks. 1t is of interest to note that on each
strike Red, the weaker side, bluffs with the same tasks that Blue uses in
his allocation. Thus if Red is very weak he bluffs with each of the three
tasks. However, if Red is moderately weak, he bluffs with two tasks—
counter air or air defense—and Blue splits his forces between the same
two tasks. '

5. Blue's defense decreases during campaign. As noted above, prior to
the closing phase of the campaign Blue splits his forces among his air tasks.
The actual split is a function of the force sizes of Blue and Red and the
number of strikes left in the campaign. However, as the campaign proceeds,
the fraction of Blue’s force allocated to air defense will decrease. At the
same time, the fraction allocated by Blue to counter air will increase.
During this time, the chance that Red will attack Blue also decreases, but
the chance that Red will defend himself increases.

6. Blue's defense in a long campaign. In the early stages of a relatively
long campaign, the stronger side defends itself against a concentrated at-
tack by the weaker side. During this period, Blue dispatches on air defense
a force of planes approximately the size of Red’s entire force. You will
recall that a particular value for the air-defense effectiveness was assumed.

Table 5 summarizes the optimal tactics for campaigns consisting of at
most eight strikes. The tabulation gives the optimal allocation for each
strike (where the strike number is defined by the number of strikes remain-
ing in the campaign) as a function of the relative sizes of the forces at the



Table 5. OpriMaL ALLOCATION OF FORCES AMONG THREE Tasks
(Strong side having p forces and weak side having ¢ forces, p > ¢)

Duration of
campaign
(no. of strikes
remaining in

Relative initial
strengths of
opponents (ratio
of strong side

Optimal initial allocation by strong side

(force size allocated to)

Optimal initial allocation by weak side
(probability of concentrating forces on)

Value of game

A to weak side) Counter Air Ground Counter Air Ground
campaign) p/q Air Defense Support Air Defense Support

1 1.00 to « 0 0 P 0 0 1 p—q

2 1.00 to « 0 0 D 4] 0 1 2(p — @

3 1.00 to 2.00 q 0 P —q 0.50 0.50 0 3(p —q
2.00 to » 1.5¢ 0.5¢ P — 2q 0.50 0.50 0 3(p — Q)

4 1.00 to 2.33 0.5p + 0.5¢ 0.5p — 0.5¢ 0 0.50 0.50 0 4.5(p — @)
2.33 to 1.67¢ 0.67¢q p — 233 0.33 0.33 0.33 4.00p — 3.33¢q
1.00 to 1.1 0.41p + 0.59¢ | 0.59p — 0.59¢q 0 0.53 0.47 0 6.35p — 6.35¢

5 1.70 to 2.45 | 0.55p + 0.36g | 0.45p — 0.369 0 0.45 0.55 0 5.82p — b.45q
2.45 to 1.70g 0.75¢ p — 245 0.25 0.30 0.45 5.00p — 3.45¢
1.00 to 1.44 | 0.32p + 0.68q | 0.68p — 0.68¢ 0 0.56 0.44 0 8.39p — 8.39%¢

6 1.44 to 1.78 | 0.40p + 0.56¢ | 0.60p — 0.56q 0 0.52 0.48 0 8.00p — 7.83¢
1.78 to 2.51 0.59p + 0.22¢ | 0.41p — 0.22¢ 0 0.41 0.59 0 7.04p — 6.12¢g
2.51 to 1.71¢q 0.80q p — 2.51 0.20 0.29 0.51 6.00p — 3.51¢
1.00 to 1.29 | 0.25p + 0.75¢ | 0.75p — 0.75q 0 0.58 0.42 0 10.50p — 10.50¢q
1.29 to 1.53 0.29p 4 0.70¢ | 0.71p — 0.70¢q 0 0.57 0.43 0 10.26p — 10.19¢

7 1.53 to 1.84 | 0.41p + 0.51¢ | 0.59p — 0.51¢ 0 0.50 0.50 0 9.54p — 9.09¢
1.84 to 2.55 | 0.63p + 0.11¢ | 0.37p — 0.11¢q 0 0.37 0.63 0 8.21p —~ 6.64q
2.55 to 1.72q 0.84¢ p — 2.55 0.17 0.28 0.55 7.00p — 3.55q
1.00 to 1.25 0.20p + 0.80¢ | 0.80p — 0.80¢q 0 0.60 0.40 0 12.60p — 12.60q
1.25 to 1.40 0.22p 4+ 0.78¢ | 0.78p — 0.78¢ 0 0.59 0.41 0 12.48p — 12.45q

8 1.40 to 1.59 0.28p + 0.69¢ | 0.72p — 0.69¢ 0 0.56 0.44 0 12.06p - 11.869
1.59 to 1.88 | 0.42p + 0.46q | 0.58p — 0.46¢ 0 0.49 0.51 0 11.03p — 10.22¢q
1.88 to 2.58 | 0.66p + 0.01¢ | 0.34p — 0.01¢ 0 0.34 0.66 0 9.36p — 7.07¢q
2.58 to «© 1.72¢ 0.86q » — 2.58 0.14 0.28 0.58 8.00p — 3.58¢
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time of that strike. However, the value of the game, which is given in the
last column of the tabulation, is for the campaign of given duration. Using
the definitions of optimal strategy, one can verify the values given in the
table.



1 1 INFINITE GAMES WITH
SEPARABLE PAYOFF FUNCTIONS

1. INTRODUCTION

In Chapter 3 we described a general method or procedure for solving
finite games. Thus, given a game with a finite number of strategies, we
can compute all the optimal strategies of Blue and Red. Since the method
requires inverting a finite number of submatrices, it is a finite process.

No general method of solution exists for infinite games. That is, given
an arbitrary game with an infinite number of strategies, we do not have a
finite process for obtaining the optimal strategies of Blue and Red. How-
ever, there are some special methods applicable to special games classified
according to the form of the payoff function. We have already deseribed
in Chapter 7 a method of solution for a large class of games, those games
whose payoff is a convex function of Red’s strategies. We shall now discuss
another large class of games, those whose payoff function is a separable
function of Blue’s and Red’s strategies. "

2. DEFINITION

Suppose Blue chooses a strategy z from the interval 0 < z < 1 and
Red chooses a strategy y from the interval 0 < y < 1. If the payoff
function has the form

M(z,y) = ,-§1 P a:ri(z)s;(y)

where the functions r; and s; are continuous, then the game is called a
separable game.
Suppose that n < m. Then by rewriting the payoff function as
157
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M@y = 3 [ £ @ ),
we can represent the payoff function as a single sum
M@y = 2 A@sW)

where rj(z) = .%1 a;7ri(z). However, we shall use the double-sum form of

of the payoff function since it provides greater mathematical flexibility.

3. MOMENTS

A mixed strategy for Blue may be represented by a cumulative prob-
ability distribution function F(z). .A mixed strategy for Red is a cumu-
lative probability distribution function, G(y). The expectation, or mixed
strategy payoff, for a separable game is then given by

o(F, 6 = [ [ M, y) dF (z) dG()

= 3 3 ['r@ dF@ [ s) dGw).

i=li=1
Let
r= [l r@dr@, i=12...,m,
and
1 .
5= [) 50 d6@), Ji=12...,n

Then to each distribution function F(z) there corresponds a vector
r = (r, 7y ...,"s). To each distribution function G(y) there corresponds
a vector s = (s1, 82, . . ., S»). We shall refer to the vector r as the m
moments of F(z). Similarly the vector s represents the n moments of G(y).

In terms of the components of these vectors the mixed strategy payoft
is the bilinear form

M=

m
E(r,s) = 3 airis;
F i=1 .

1

4. EQUIVALENCE OF F(x) AND POINTS OF CONVEX SET R

Letting F(z) vary over all distribution functions, we obtain a set R of
points 7 = (r1, 75, . . ., Tm). We shall now show that this set 1s the convex
set D spanned by the curve C traced out in m dimensions by

rs = 1), 1=12...,m,
as z varies between 0 and 1.
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Consider the convex set D spanned by C. Suppose r° = (17, ..., %)
is a point of R not in D and let F°(x) be a distribution function which
yields 7% or

Q= ﬁ,-,.(z) ') i=1,2,...,m.

Then there exists some hyperplane separating r® from D. That is, for
some fixed § > 0,

m m
T el — 3 caix) =8
i=1 i=1

foralzin0<z<1.
Integrating both sides with respect to dF°(x), we obtain

m 0 1 _ m . 1 . .
i§1 CiT3 ./; dFo(x) i§1 C,,‘/(; 7'1,(37) dFO(x) 2 5‘/(; dFo(x),

m m
or Z el = T cal 2,
i=1 i=1
giving the contradiction 0 > 0. This proves that all points of R are in D.
Conversely, we shall show that every point in D is in R. Suppose r° is
some point in D. That is, the components of r° may be represented as

m
T? =k2 akri(xk), 1= 1, 2, ce.ym,
=1

where o > 0 and kzl ar = 1. It is easily seen that the distribution
function

@) = 3 ouln(®)
k=1

yields the point 7°. Hence every point of D is in R.

In a similar manner we can show that if we allow G(y) to vary over all
distribution functions we obtain a set S of points s = (s, Sy, . . . , 8») which
is identical with the convex set spanned by the curve C’ traced out in n
dimensions by

8:':8:'(?/), j=1;2)"°;n)
as y varies between 0 and 1.

5. BILINEAR GAME OVER A CONVEX SET

‘We have shown that if an infinite game has a separable payoff function
every mixed strategy F(x) corresponds to some point 7 in a convex set R.
Conversely, every point in R corresponds to at least one mixed strategy
F(z). Therefore, the selection of a mixed strategy is equivalent to the
selection of a point in a convex set R in m-~dimensional space.
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A separable game having a payoff function

n m

M@,y = 2 2 ar@si)
j=li=

is thus equivalent to the following game: Blue chooses a point

r=(r,..., ) of a convex set R lying in Euclidean m-space. Red

chooses a point s = (s, .. ., s,) of a convex set S in Euclidean n-space.

The payoff from Red to Blue is given by

m
E(r,s) = ) .21 0557385

i=1i=
Further, the set R is the convex set spanned by the curve defined by
r; = ri(x), i=12...,m,

as z varies between 0 and 1. The set S is the convex set spanned by the
curve defined by
si=si(y); j=1!27'°')n)
as y varies between 0 and 1.
Optimal strategies of the two players are given by points r°, s such that

min E(r% s) = max E(r, %) = v,

seS reR
where v is the value of the game. From the minimax theorem for bilinear
forms over convex sets, it follows that there exist optimal strategies for the
players. Of course, the existence of optimal strategies F*(x), G*(y) for the
original game in terms of the separable payoff function was guaranteed by
the fact that r;(z) and s;(y) are continuous.

6. DISTRIBUTION FUNCTION F(x) AND POINTS OF CONVEX SET R

We have seen that to each distribution function F(x) there corresponds
some point r of R, and conversely. Every point on the curve C has for
its coordinates

r; = ri(t), i=1,2...,m0<t< 1.
Now every one-step distribution function F(z) = I.(x), where 0 <t <1
corresponds to a point r of R such that

= ﬁ) "r@dl@) =) i=12...,m

Therefore points on C correspond to one-step distribution functions.

Every point in R can be represented as a convex combination of at
most m points of C. It follows from above that every point of R corresponds
to a step-function having at most m steps.
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7. NUMBER OF STEPS IN STEP-FUNCTION SOLUTION OF GAME

Every separable payoff function may be expressed as

Mz, y) él (iénil aiﬂ”i(x))sj(y)

2 @)

where n < m. This is a bilinear game played over the convex sets R, S
determined by the curves rj = rj(z) and s; = s,(y), respectively. Since the
dimensions of both B and S are n, R’ and S are determined by step-func-
tions with at most n steps. Therefore each player has an optimal mixed
strategy with at most min (m, n) steps.

Suppose the payoff function is further generalized and is given by

M(x, y) = ? 2 (L2714 (x)sJ(y)’

and the convergence is uniform in y. Then the functions
si(y) = 'El aiisj(y): 1=1, 2,... » M,
i=
are continuous. The payoff may therefore be rewritten
id !
Mz, y) = _2 ri(x)si(y).

From this it follows again that each player has an optimal mixed strategy
with at most m steps.

8. SOLUTION OF SEPARABLE GAMES

A solution of a separable game, or a pair of optimal strategies of the
two players, is a pair of points r* of R and s* of S such that
m,n mn
min ¥ a;ris; = max ¥ agrsi =0,
8eS ij=1 reR  i5=1
where 7, and s; are the components of r, s, respectively. We shall show
how to find r*, s*.
The payoff function for a separable game may be written as follows:

E(r,s) = Zn ( 21 il )S,' = % ( § a,,s,)r1

=1 1=1
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If we let
fitr) = '§1 aijri i=12...,n,

n
gi(s) = .21 Q4385 1= 1, 2, ce.,m,
i=
we have

Be,s) = 3 10 = 2 00m

Ty
I\

The planes f;(r) = 0 can be considered to divide the space R into a finite
number of portions Ry, . . ., By, . . ., Bi. For each point r° of R, consider
the set of points S(r°) of S where mén = fi(r%)s;is assumed. Thisis a convex

set generally lying on the boundary of S. Similarly, the planes gi(s) =0
divide the space S into a finite number of portions Sy ..oy Siye ey S
Consider, for each s° of S, the set of points R(s%) where n}eax Z gix)r; is

reached. If a point 7 has the property that S(r%) contains a point s for
which R(s°) contains %, then r° is an optimal strategy for Blue. A similar
analysis can be applied to Red.

By considering each region R; of By, R, . . ., R; and using the above
mapping of R into the space S and then mapping the regions of S into R,
we can obtain all solutions of both players as the fixed points in these
mappings.

Ezample. Consider the following separable payoff function:

Y LT dy{ T g T
M(x,y)—y(coszx+sm2x 1)+3(cos2x 3311122;)

1 . T
+ 3<5s1n2x — 3 cos 2x)-
This function does not have a saddle-point, hence the game has a mixed
strategy solution. Now the choice of a mixed strategy F(z) by Blue is
equivalent to his choosing a point r = (74, r2) in a set R which is the convex
set spanned by the curve

r1=sinz-2rx, 0LzL1,
T
r2=cos§x, 0<z<L1.

Similarly, Red chooses a point s = (sy, s2) in a set S which is the convex
set spanned by the curve
st =1y, 0<y <1,

82=y21 0<yS1
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The bilinear payoff becomes
E(r,s) = sory + 12 — 1) + §81(r2 — 3r1) + 2(5r1 — 31,)
= ri(ss — 451 + B + s + $51— 1) — s

In Fig. 19, the convex set R is the set of points bounded by the circular
arc ABC and the line ADC. The line BD, or [ = 4r; — 4r, = 0, divides
the space R into three regions—BD where I; = 0, DAB where [; > 0, and
BCD where [, < 0.

Ty o/ S
\\:5\/ 2 & / i 2
Do v/
° \\ S)
©f,
P N
S/
A
N
\‘f°><\«7 b //
v v
% \to 7 -t
ORNL
.7
A2 AN
/ N
/ -3
0 / !
R (Blue's strategy space) N S (Red's strategy space)

Figure 19

The convex set S is the set of points bounded by the parabolic are
OMN and the line OQN. The line VW, or m; = s, — 48, + § = 0, the
line QT or my = s+ 4s1 — 1 = 0, and the line LM or m, = my < 0,
decompose S into five regions as follows:

OQLW, where m; > 0, me < 0, excluding m; = my = 0;
QVL, my > 0, my > 0, my = my = 0;
LVNT, m <0, my > 0, my = my = 0;
WLT, m; < 0, me L0, my = Ma;
LM, m — my < 0.

The set R is decomposed into three regions by means of ; = 0 and
I = 0, namely:

ABD, where I; > 0, I, 2 0, excluding I, = I, = 0;
BCD, L<LO, I, <0, L=0L=0;
D, 1 = l2 = O

For every point 7°in ABD, E(r°, s) assumes its minimum at s; = s, = 0.
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However, for the point s* = (0,0) = 0, E(r, 0) assumes its maximum at
r = (1, 0) which is outside ABD. Therefore, no point in ABD can be an
optimal strategy for Blue.

Now consider the region LVNT of 8. For each point s of this region,
E(r, s% assumes its maximum at r; = 1, which is in region ABD. But
region ABD, we have seen, maps into s = 0 which is in region OQLW, and
not in LVNT. Thus no point of LVNT can provide an optimal strategy.

We can summarize the complete mapping of the various regions of the
two spaces as follows:

In Space R:

every point of ABD maps into O of space S;
each point of BCD maps into some point of OWMN of S;
point D maps into every point of S.
In Space S:
every point of OQLW maps into C of space R;
each point of QV L maps into some point of ABC or E;
every point of LVNT maps into A of E;
each point of WLT maps into either 4 or C of E;
every point of LM maps into every point of ADC or R.

To find the solutions, or the fixed points, it is necessary to combine the
two mappings. Letting — stand for “map into,” we can combine the
above mappings as follows:

every point of OQLW — C — N;

each point of QVL — some point of ABC — 0, OWMN;
every point of LVNT — A — O;

each point of WLT —> A or C —> O or N;

every point of LM —every point of ADC = AD + DC
+D—O,N, 8.

It is seen that only the last of the five regions yields fixed points. For,
in this case we have, in particular,

LM — D — LM.

The solutions of the game are therefore:
for Blue: D: n=4% r
for Red: LM: si=1%, s<

The value of the game is v = —1.

We can express the solutions in terms of cumulative distribution func-
tions as follows:

)

)

ool oS

F¥(x) = § I(x) + 1L(2),

1 1
@) = (1= g )l) + 5 10),  0<t<E
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Blue has a unique step-function solution, whereas Red has an infinite
number of step-function solutions.

9. LOCAL DEFENSE OF TARGETS OF EQUAL VALUE

The solution to the problem of how to defend targets of equal value
yields results which are not immediately evident. In defending such a
system of targets, it is sometimes more profitable, depending on the payoff
function, to leave some targets undefended and to defend others heavily.
Although all the targets may have the same value, it is frequently a poor
strategy to provide the same defense to each of them. In the model we
shall study, it turns out that if the defender has a relatively small total
force, then he never defends all targets but rather defends some heavily
and leaves the remainder unprotected.

Case 1. INDIVISIBLE DEFENSE.

Suppose the Defender has D units of defense to distribute among n tar-
gets of equal vlaue. Further suppose that the Defender may assign either
0, 1, or 2 units of defense to each target—i.e., the defense units are indi-
visible, and further that D < 2n. Assume that the Attacker has a total of
A units, where A < 2n, with which to attack each target with either 0,1,
or 2 units.

We have an Attack-Defense game where both opponents know the
parameters n, A, and D. A strategy for the Attacker is the choice of some
number ¢,

A
05t on
representing the fraction of the targets subjected to attack by two units.
Therefore, the fraction of targets attacked by single units is A/n — 2¢.
Of course, a strategy for the Attacker chooses only the number of targets
to be attacked and leaves the selection of the specific targets to some
random device. A strategy for the Defender is the choice of some number
u, where
0 S u S 2)
2n
representing the fraction of targets to be defended by two units. Therefore
D/n — 2u is the fraction of targets having single defense units.

A possible payoff to the Attacker is the expected number of targets
on which at least one bomb will be dropped. Now for each target, the
expectation of its being destroyed will depend upon whether it is attacked
by 1 or 2 units and defended by 0, 1, or 2 units. Thus for each target we
have the payoffs shown in Table 6.
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Table 6. Locan DereNsE oF TARGETs

1 (2) 3) 4 (5)
Number | Number . )
attacking | defending Probability Payoff if Ezpected
of (1) and (2) (1) and (2) Payoff

units units

1 0 (g——Zt)(l—g—{-u) 1 (§—2t)(1-—§+u)

1 1 (4 - 2c) (9 _ 2u) 0
n n
1 2 (% - 2t)u 0 0
D D
2 0 t(1—;+u) 1 t(l—n—i—u)
D 3 |30
2 1 t(; - 2u) 2 4t<n 2u)
2 2 tu 0 0

The payoff associated with n targets will be given by n times the sum
of column (5) or

M@, u) =n [( —2t><1—%—{—u)—i—t(l—%—l—u)—{-%t(%—%&)}
= gntu—}—( —n)t—{—Au—I—A—IinQ-

Since M(t, u) is bilinear in ¢ and w, it has a saddle-point, which is
given by

2A 2(7D D 4
P=5n “=5<4n—1> L
t =0, u =0, if—D—Sé-
n —7
The value of the game is
3 A D_4
D—lon (2n——D) lfn>7r
A D _4
==(n— D) 1fn§7-

For example, if the Defender has 100 defense units with which to
defend 100 targets of equal value against an Attacker having a total of
100 units, an optimal strategy for the Defender is to place two defense
units at each of 30 targets, one unit of defense at each of 40 targets, and
leave 30 targets undefended. An optimal strategy for the Attacker is to
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use two attack units on each of 40 targets, one attack unit on each of 20
targets and no-attack on 40 targets. Of course, the specific targets to be
defended or attacked are picked at random. The expected number of
targets destroyed is 30.

If the Defender had placed one unit at each of the 100 targets, then the
Attacker could destroy as many as 37.5 targets by attacking each of 50
targets with two units.

CASE 2. ARBITRARY DEFENSE.

If we assume that the Defender is able to distribute his forces con-
tinuously—i.e., he can place any part of a defense unit at a target—then
the local defense problem becomes an infinite game with a separable payoff
function. Again, the best defense strategy may require a heavy defense
for some targets and no defense for others. As before, the Defender has
D units of defense with which to defend n targets of equal value, where
D < 2n. He is able to distribute continuously these D units among the
n targets. The Attacker has A4 units of attack, where A < 2n, with which
to attack some or all n targets. However, the Attacker may engage any
given target with zero, one, or two units only. The payoff to the Attacker
is measured by the expected number of targets destroyed.

A strategy for the Defender is a distribution function G(y) representing
the fraction of his targets defended by no more than y units of defense at
each target. Since no target will be attacked by more than two units, it
would be wasteful to have y larger than 2.

A strategy for the Attacker is some number ¢ where u = ¢ < A/2n,
representing the fraction of targets to be attacked by two units. The se-
lection of particular targets to be attacked and particular targets to be
defended is made at random subject, to the given fractions.

The payoff to the Attacker is the expected number of targets destroyed.
The Attacker uses 2tn units of attack for double attacks on targets and the
remainder, A — 2¢n units, for single attacks. Now consider a target which
is defended by y units of defense and is under double attack. The prob-
ability that the target is destroyed is the probability that the two attacking
units are not destroyed, or

y.y_,_¥
=g =1-4
Now, the probability that a given target has no more than y units of
defense is G(y); it follows that the Attacker’s a prior:i expectation of
destroying any given target is

7, = [ Y
Ei = | (1 -4 ) dG(y).
For the 2in targets, the Attacker’s expectation for his double attacks
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will be 2tnE;. Similarly, the Attacker’s expectation for singly attacked
targets is

(4 =20 [' (1 —y) dGW)

with the upper limit of integration extending only to 1, since no payoff is
expected for targets defended by more than one unit. Therefore, the total
payoff to the Attacker corresponding to each ¢ and G will be

(11.1) M, G) = 2ul K (1 — Z—2> dG@y) + (4 — 2nd) [)‘ (1 — y) dG(y).

The Defender must distribute all D units of defense among his n targets;
hence he is restricted to pick only those G’s for which

(11.2) n ﬁ) 2 ydG(y) = D.

‘We thus have a game in which the maximizing player picks some num-
ber ¢ in the range 0 < ¢ < A/2n, and the minimizing player picks a distri-
bution function satisfying (11.2), where the payoff, M (¢, @), to the Attacker
is given by (11.1). There exist optimal strategies for the two players which
will necessarily depend on the parameters S = A/nand T = D/n, average
attack per target and average defense per target. The solutions are ob-
tained by analyzing the convex set spanned by the curve (ui, pe) defined by

w= [T (1-%) 6w -2 [ a - acw,

gy = ﬁ y dG(y),

for all distribution functions G(y) over the interval (0, 2). In terms of this
new set the game has a saddle-point which is readily obtained by the
mapping method.

Table 7 presents a complete summary of the solutions to the game and
their values for all possible values of average defense per target and average
attack per target. The solutions are independent of the number of targets,
n, but depend on the parameters S and 7. One can easily verify the
solutions shown in the table.

In region I defined by 0 < 8<1and 0T <4~ 2v/3, the De-
fender may distribute his D units equally among the n targets, giving each
target D/n units. In region II he may leave some targets undefended and
defend the remaining targets equally. In region III the Defender must
leave some targets undefended and place either one or two units of defense
at the remaining number of targets. In region IV, the Defender places two
units at each of the D/2 targets and the rest necessarily are undefended.
In region V he places one unit at each of D targets leaving n — D
undefended. The Attacker has a pure strategy.
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Table 7.

LocaL DEFENSE OF TARGETS—ARBITRARY DEFENSE

Range of Optimal strategies
; Value of game
Region No.
a=4 r=2 Attf ok Defense G* v
n n t
— 1
I 0tol | Oto4—2v3 | 0 Any G* such that [) dG*(y) = 1 1 - T8
. — 1
I Otol | 4-2v3 to$ 0 Any G* such that /; dG* () = 1, / V2 dGHy) =8T —4 | (1 —T)S
5 | 4 2 32-T), 4—2T, 7T —4 3,
I 0to2 | Zto2 23 S+ L+ T, 2@ -8
5 T T T
v 2t02 | 0to2 S—1 (1--2—)10+2—12 1-3
v 1to§ om‘$ S—1 | 1=+, ‘—*—‘—ﬁ*’ﬂ
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For example, if the Defender has 100 targets to defend, then, depending
on the numbers of defense and attack units, the optimal strategies are
given by Table 8.

10. SOLUTION OF POLYNOMIAL GAMES

If the payoff is a polynomial function of the two strategy variables
z and y, we call this separable game a polynomial game. By introducing
moments we transform the polynomial game to a bilinear game over a con-
vex set, usually referred to as the moment space. The transformed game
can be solved by mapping and determining the fixed points.

We shall describe the mapping method of solving polynomial games by
illustrating it for a particular game. Suppose the payoff to Blue is given by

Mz, y)
= 21z + 18z — 24z — 16y — 36zy — 9z%y + 182%y + 60y> — 3643,
where 0 <2< 1 and 0 <y <1 are pure strategies of Blue and Red,

respectively. Let F(z) and G(y) be mixed strategies of Blue and Red.
Define the following moments:

fi= [ ot dF (@), =123,

) S .
g = [, v dGW), i=123

The choice of a mixed strategy F(x) by Blue is equivalent to his choos-
ing a point f = (f1, f», f3) in a convex set B which is the convex hull of the
curve C defined by

ry = 2%, 1=1,23,
as z ranges from 0 to 1. Similarly, each mixed strategy G(y) is associated
with some point g = (g1, g2, gs) in a convesx set S which is the convex hull
of the curve D defined by

szyj j=1’2;3;
as y ranges from 0 to 1. :

In terms of points of convex sets B and S, the payoff becomes the
bilinear form

M(f, 9)
= 21f1 -+ 18f2 - 24f3 - 1691 - 36f191 e gfzg1 + 18f3g1 + 6092 - 36g3

The convex set R is a three-dimensional volume whose boundary con-
sists of the curve C, lines connecting the point (0, 0, 0) with each point of
C, and lines connecting the point (1,1, 1) with C. There are no planes
which form the boundary of R. Of course, the boundary of S is the same as
the boundary of E.

We now have the bilinear game in which Blue picks some point (f1, f2, f3)



I

Table 8. LocaL DEFENSE OF TARGETS—SOLUTION FOR 100 TARGETS

Optimal strategies: n = 100 Value of
game
Number | Number No. Targets Attacked by Target Defense
attack defense
units A units D No. No. No. No. Number
] No. per No. per No. per No. per targets
2 Units | 1 Unit | 0 Units Targ. Targ. Targ. Targ. Targ. Targ. Targ. Targ. destroyed
100 50 0 50 50 100 .50 0 0 0 0 0 0 50
100 55 0 55 45 76 .73 24 0 0 1 0 2 45
100 100 40 20 40 0 30 0 40 1 30 2 30
175 100 75 25 0 0 50 0 0 1 50 2 50
150 50 50 50 0 0 50 0 50 1 0 2 31
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in R and Red picks some point (gi, g2, gs) in S. Let us rewrite the payoff
as follows:

M(f, 9)

= —16¢: + 60g. — 36gs + 3A(7T — 12¢y) -+ 9fa(2 — g) + 6fs(—4 + 391).

The maximum value of a linear form over a convex set is assumed on
the boundary of the convex set. Therefore, for any point (g1, gs, gs) chosen
by Red, Blue, who wishes to maximize M (f, g), will pick some point on C
or some line joining (0, 0, 0) to C, or some line joining (1,1, 1) to C. We
shall first determine when Blue selects each of these three types of
boundaries. :

In order for Blue to select some line joining (0, 0, 0) to a point on C,
it is necessary that

M0, 9) = M(f* 9),

where f°is on C or f = x, f3 = 22, f§ = «® It is also necessary that

M) _
dx

2 0
and M%%J—) <0.

The first two conditions yield the equations
3x(7 — 12g1) + 922(2 — ¢1) + 623(—4 + 3g1) = 0,
3(7 — 12¢1) + 18z(2 — ¢u) + 182%(—4 + 3g1) = 0.

Solving these equations, we obtain

wive

T = %) h =
These values satisfy the necessary conditions for a maximum. Therefore,
if Red chooses a mixed strategy for which g1 = 3, Blue can maximize
M(f, g) by choosing any point in R along the line joining (0, 0, 0) to
(&, % 3). From this it follows that if Red chooses g1 > %, then Blue will
choose the point (0, 0, 0) in R, and if Red chooses g1 < 2 Blue will choose
a point (z, 2%, z°) in R satisfying the equation

d—_Md(i, 9) = 3(7 — 12¢1) + 18z(2 — g1) + 182*(—4 + 3g) =0

or

. —3(2 — g1) — V3(75g® — 150g: + 68)
6(391 - 4)

We have partitioned the space S. We now need to partition the space
R. Again, we make use of the fact that the minimum of a linear form over .
a convex set is assumed on the boundary. Therefore, for any point (f3, f2, fs)
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chosen by Blue, the minimum value of M({, g) will be assumed either on D,
or on some line joining (0, 0, 0) in S to D, or on some line joining (1, 1, 1)
in 8 to D.
Let us rewrite the payoff function as follows:

M, 9) ,
= 21f; + 18f; — 24fs + g1(—16 — 36f1 — 9fz 4 18fy) + 60g. — 36¢s.

We can show that the coefficient of g satisfies the inequality
—43 < —16 — 36, — 92 + 18f; < —16.

The payoff function M (f, g) will assume its minimum value along a line
joining the point (1,1, 1) in S to D for all points in B satisfying the three
conditions:

@) M(f, 1) = M({, ¢,
where g°ison D or g =y, g5 = ¥% 68 = ¥,
i aM(f, 8" _
(ll) dy - 0)
and
2
(i) d Md (y,t; )

The first two conditions yield the equations
(—16 — 36f; — 9f2 + 18f;) + 60 — 36
= y(—16 — 36f, — 9z + 18f;) + 60y* — 36y3,

(—16 — 36fi — 9f: + 18f3) + 120y — 108y> = 0.
Solving, we obtain

—16 — 36f, — 92 + 18f; = —28 and y =}
These values satisfy the conditions for a minimum. Therefore, for all points
in R for which

—16 — 36f1 — 9f2 + 18fs = —28,

the minimum value of M(f, g) is assumed at each point of the line joining
(1,1,1) to (3, 1, &&). It follows that for all points in B for which

—16 — 36/ — 9fz + 18fs < —28,

the minimum of M(f, g) is assumed at (1,1, 1) in S, and for all points in
R for which

—16 — 36fi — 9z + 18f; > — 28,
the minimum of M(J, ¢) is assumed at some point (y, ¥?, y®) in S satisfying
the equation :
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aM d(;‘ 9 _ _15— 36f1 — 9f: + 18f; -+ 120y — 108y2 = 0,

or

y = 10 = V100 + 3(=16 — 36/, — Of, + 18/,
- 18

Table 9 presents a summary of the partitioning and mappings of spaces

Tatle 9
M(z,y) = 21z + 182 — 2413 — 16y — 36ay — 922y + 1823 + 6042 — 36y°

R-space

Map into points in S

Points i hich
oints in R for whic (location in S of min (J, g))

L= —16 — 36/ — 9 + 18, < —28 | (11 1)
VT T
L= —17 — 36/, — 9f + 18/, > —28 | y = 0= V100 + 3}

18

h=-16 — 36f1 - 9f2 ~+ 18f3 = —28 B(%) % ‘§17) + (1 - ﬁ)(ly 17 1)
where0 <8 <1

S-sPACE

Map into points in R
(location in R of max M(f, g))

n>3 0,0,0

~ =32 — g — V3(7593 — 150g, + 68)
63 — 4)

Ol(—%—, ?’i‘! %) + (1 - a)(OJ 07 0)

Points in S for which

ity

g < z

Wiy

g =

R and S. The solution of the game, the optimal strategies, are the fixed
points in the mappings listed in the table. We test each of the three regions
in each space for the existence of fixed points. From the table we note
that if & < —28 then M(f, g) assumes its minimum at (1,1, 1) in S, or
g1 = 1. Again from the table we note that if gy = 1 > 2, then M {, 9
assumes its maximum at (0,0, 0) in S or I; = 16; hence I; > —28. There-
fore no point in R for which I; < —28 can provide a solution to the game,
In a similar manner, we can show that I, > —28 and ¢; < % contain no
fixed points, and therefore no solutions of the game.

Since we have eliminated two of the three regions, it follows that
L = —28 and ¢; = % must contain the fixed points. It remains to solve
for the values of @ and . For the third region to contain a fixed point,
we must have
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Biy_pg=2
3T1-6=3
a o 4
—16 — 36(5) - 9(;) + 18<§> = —28,
or a = g’ 8= %

The fixed points are therefore (3, %, i) in B and (%, &, 4%) in S. If Blue
chooses a strategy such that fy = 3, fo = &, fs = £, then Red can mini-
mize M(f, g) by choosing g1 = 3, g2 = 3, 95 = 37 If Red chooses the pre-
ceding set of ¢’s, then Blue can maximize M (f,9) by choosing fi = %,
f» = &,fs = 7% Thisverifies that these points are fixed points and therefore
a solution of the game. The solution can be expressed by

F*(z) = o(2) + 2L1e(2),
G*(y) = 3s(y) + $L(y)-

The value of the game is given by

v = ﬁ)‘ [)l M(z, y) dF*(z) dG*(y) = 6.

11. TACTICAL RECONNAISSANCE—SINGLE MISSION

In planning an attack on a target whose military worth is not known
exactly, it may be advisable to invest in reconnaissance before the mission
to determine the exact worth of the target. The uncertainty regarding the
worth of the target may arise from unknown or partially known results of
earlier strikes on the same target. If the exact worth of the target is dis-
covered through reconnaissance, then it is possible to dispatch the most
efficient size attacking force against it—i.e., 2 large force will not be com-
mitted against a worthless target and a small force will not be sent to a
valuable target. Since reconnaissance is costly, it is necessary to evaluate
its desirability against the potential outcomes of the attack.

A successful reconnaissance is assumed to reveal the exact value of the
target. In order to be successful, at least one reconnaissance aircraft must
fly to the target and return.

Let us introduce the following notation:

B = military worth of one bomber.
R = military worth of one reconnaissance aircraft.
T = military worth of the target.
#(f) = probability that the value of the target does not exceed ¢. This
probability distribution is known prior to the reconnaissance.
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i

7 = number of reconnaissance aircraft sent out prior to the mission.
b = number of bombers dispatched to the target during mission.
P = one-way survival probability of bomber and reconnaissance
aircraft between base and target.
oT = probable worth of the target after being hit by one bomber.
a®T = probable worth of the target after being hit by two bombers.

]

The object of the attacker is to maximize the net outcome of the mission,
namely the difference between the target damage and the aircraft losses.
Thus the payoff will depend on 7 and b and is given by

M(r, b) = / [l — a#®) — (1 = p?)Bb — (1 — pY)Rr] dg(t),

where the first term under the integral represents the target damage and
the remaining two terms are the worths of the bomber and aircraft losses,
respectively.

Using the information available, if any, from reconnaissance and
maximizing on b, we obtain

max M(r,b) = M(r) = / {(1 ~ p?) max [ C(b, £) dé(t)

+ 1= (1~ )T max C,0 — (1 — pYRr) o),
where C(b, t) is defined by
C(b,#) = (1 — ar?) — (1 — p?)Bb.

Finally the solution is obtained by maximizing M (r) on r.
It is convenient to give the solution in terms of the following constants:

P = —In(l - p),
D = _(1 - PZ)B’
plnea

[ tds®,

]

¢1
- )
A= Dfln  dg ().

Further, we impose two conditions on these constants:
@) #D) =0,
(ii) AP — (1 — p)R > 0.
The first condition states that there is no chance that the reconnaissance
report will indicate that no mission should be run at all. The second con-
- dition states that there is sufficient doubt concerning the state of the target

to make reconnaissance worthwhile. If the second condition fails, then no
reconnaissance will be sent out.
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Maximizing M (r, b) on b and r, we obtain as the optimal sizes, r*, b*,
of reconnaissance aircraft and bombers, respectively, to be dispatched:

r* =14 -1-1n{1—P-
7 14
‘ln(5>
—plna

R
In (%)

—plnea

if reconnaissance reports T
b*

if reconnaissance does not report.
For these optimal values of r and b we have the payoff
M@* b9 = —D D%+ % [AP — (1 — p9R] — (1 — pY)Rr*.

If no reconnaissance were sent, then the best result would have been

M@*) = ¢~ D —Dhn %

Ezample. Suppose the military worth of a bomber is the same as a
reconnaissance aircraft, each equal to one unit. Prior to reconnaissance,
all that is known about the target is that it is just as likely to have a
value of 50 units as 5 units. Suppose each bomber can destroy 10 per cent
of the worth of a target. Assume that the one-way survival probability of
each aircraft is 0.8.

We have then the following given constants:

B=R=1,

o(t) = 31:(t) + 3so(t),
a = 0.9,
p = 0.8.

Substituting the above constants, we obtain the following additional

constants:
P = —In(l — 0.64) = 1.022,

(1 —0681 _
D=—"08moo 4%
50 1 1
o= t[§ () + -2-d150(t)] ~ 275,
27571 1
A =4.275 / In T [5 aIs(t) + édlao(t)] = 2.366,

#(D) = $(4.275) = 0,
AP = (1 — p)R = 2.058 > 0. '
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The optimal numbers of reconnaissance aircraft and bombers are
given by:

1, (2:366)(1.022)

L -
r=1+ 0% 1 1.86
[In (4 575>
T08mo09 = 1.86  if reconnaissance reports 5
In ( 50 >
b* = 4.275 . '
—08In00 29.20 if reconnaissance reports 50
27.5
In (4 275)
08000 — 22.10 if reconnaissance does not report.

Using these optimal strategies, the attacker receives a payoff
M(r*, b*) = 16.61.
If no reconnaissance had been attempted, the payoff would have been
M@*) = 15.27.

We may interpret the solution as follows: Two reconnaissance aircraft
are to be sent out. The expected loss is 2(1 — p?) = 0.72 aircraft. If the
reconnaissance reports that the target is worth 50 units, then 29 bombers
are dispatched, causing 50(1 — 0.9@90-8)) = 45 67 units of damage, with
an expected loss of 29(1 — 0.64) = 10.44 bombers. If the reconnaissance
reports the target to be worth five units, then two bombers are sent out
which destroy 0.77 units of the target and 0.72 bombers are expected to be
lost. If the reconnaissance fails to report, then 21 bombers are dispatched,
and the damage they inflict is either 42.15 or 4.22 units, or an expected 23.18
units, with an expected loss of 7.92 bombers. The probability that the
reconnaissance will fail to report is (1 — p2)2 = 0.13. The probability that
the reconnaissance will report, 50 is the same as the probability that the

— _— 22
1= =P o435

reconnaissance will report 5 and is given by D)
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Chess, 14-15
Coin guessing game, 8-9
Colonel Blotto:
description of, 7-8
mixed strategies;, 19-20
optimal mixed strategy, 23
optimal strategy, 38
Concave payoff functions, 121-122 see
also Convex payoff functions
Constraints, games with, 88-90
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description of, 97-9:
distribution function (#), 99
mixed strategies and distribution func-
tion, 98-100
solution of see infra Continuous games,
solution of
step-functions, 100
Stieltjes integrals see Stieltjes integrals
Continuous games, solution of, 107-116
(See also Solutions)
delayed firing, 111-115
existence of optimal strategies, 108-109
no-solution games, 115-116
optimal mixed strategies, 107-108
properties of optimal strategies, 109-
111
Convex payoff functions, 117-127
concave functions, 121-122

Convex payoff functions (cont.)
defense of n-targets, 124-127
defense of two targets, 123-124
defined, 117-118
general, 122
optimal strategies, 118-121
Cumulative distribution function (F), 99

Delayed firing game, 111-115
Distribution function (#), 99
Distribution function and mixed strate-
gies, 98-100
Duels, 128-144
as games of timing, 128
noisy:
(many bullets) and equal accuracies,
133
(one bullet each), 128-131
(one bullet) and arbitrary accuracies,
134-135
(one bullet each) without saddle-
point, 131-133
silent:
(continuous fire), 142-143
(m bullets each), 140-141
(one bullet each), equal accuracies,
134-136
(one bullet vs two), equal accuracies,
137-140
(positive initial aceuracy), 140-141
(strictly monotonic accuracies), 141~
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silent-noisy (one bullet each), 137
target prediction, 143-144

“Estimate of the Situation” doctrine, 5
Expectation, and Stieltjes integral, 100~
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Expectations, relations among, 10-12
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INDEX

Field commanders (game), 3-5

Finite games, defined, 2

Fundamental theorem see Minimax the-
orem

G

Games of strategy:

armaments, 13-14

chess, 14-15

coin guessing, 8-9

Colonel Blotto see Colonel Blotto

constraints, 88-90

continuous see Continuous games

convex payoff functions see Convex
payoff functions

delayed firing, 111-115

description of, 2-3

duels see Duels

examples of, 3-10

in extensive form, 74-78

field commanders, functions of, 3-5

guessing game, 32-35

infinite see Continuous games

infinite games with separable payoff
functions see Separable games

le Her see Le Her

mapping methods for solving, 88-96

missile firing game, 111-115

Morra see Morra

no-solution games, 115-116

perfect information, 14-15, 75, 76-78

poker, 9-10

polynomial, 170-175 see also Separable
games

reconnaissance, 61-68, 92-96

representation of, 74-76

saddle-points, 76-78

without saddle-points, 17-18

separable games see Separable games

solutions see Continuous games, solu-
tion of; Solutions

tactical (air-war) see Tactical game

target selection see Target selection

theory of, 1-2

timing see Duels

truncations, 76

Guessing game, 32-35

Hidden-objects, attacks on, 68-71
n fighters, 70-71
one fighter, 69
problem of, 68-69
two fighters, 69-70

Infinite games see Continuous games
Infinite games with separable payoff

functions see Separable games
Information sets, 75

L

Le Her:

description of, 6-7

solution, 59-60
Local Defense of Targets (table), 166
Local Defense of Targets—Arbitrary De-
fense (table), 169

Defense of Targets—Optimal
Strategies (table), 171

Local

Mapping method for solving games, 88-
96 see also Solutions

Minimax theorem:
background, 1-2
basis, 26-27
.games without saddle-points, 17-18
general theory, 16
graphical representation, 23-24
graphical representation of mixed strat-

egies, 20-21

guessing game, 32-35
mixed strategies, 18-21, 22-23
optimal basis, 28
optimal basis, construction of, 30-32
optimal mixed strategies, 22-23
optimal strategies, 28-29
proof of, 24-35
vectors, ordering of, 27-28

Missile firing game, 111-115

Mixed strategies:
description of, 18-21
and distribution functions, 98-100
graphical representation of, 20-21
optimal, 22-23



Morra:
description of, 5
optimal strategy, 72-73
solution, 60-61

Naval Manual of Operational Planning, 4
Naval War College, 4

Neumann, John von, 1-2

Noisy duels see Duels, noisy
No-solution games, 115-116

o

Optimal Allocation of Forces Between
Two Tasks (table), 152
Optimal Allocation of Forces Among
Three Tasks (table), 155
Optimal mixed strategies, and solution
of continuous games, 107-108 see
also Continuous games, solution of
Optimal strategies:
addition and multiplication by con-
stant, 39
“gll strategies active,” 42-43
convex payoff functions, 118-121
convex sets, 39
determining sets of, 49-51
dominated strategies, 40-42
existence of, 108-109
as extreme points, 43-44
extreme points yielding submatrices,
44-46
geometry of solutions, 51-54
dimension of solutions, 53-54
effective strategies, 53
essential subgame, 53
hidden-objects, attacks on see Hidden-
objects, attacks on
“Morra,” 60-61, 72-73
number of, 36
operations on games, 39
permuting, 39
poor strategies, 4042
properties of, 36-73, 109-111
reconnaissance, application of structure
theorems to, 65-68
reconnaissance as game of strategy,
61-65
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selection of, 71-73

solution of “le Her,” 59-60

solution of “Morra,” 60-61

solutions see Solutions

submatrices yielding extreme points,
46-49

target selection, 54-59 see also Targets

P

Payoff functions see Convex payoff func-
tions; Separable games

Perfect information, games with, 14-15,
75, 76-78

Poker, 9-10 .

Polynomial games, 170-175 see also Sep-
arable games

“Poor” strategies, 40-42

1

Reconnaissance:
application of structure theorems to,
6568
as game of strategy, 61-65
mapping method for solving, 92-96
tactical, 175-178 see also Separable
games
Representation of games, 74-76
Riemann integral, Stieltjes integral as,
104

S

Saddle-points:
description of, 12-14
games without, 17-18 see also Minimax
theorem
in games with perfect information, 76—
78
Separable games, 157-178
bilinear game over & convex set, 159~
160
definition, 157-158
distribution function F(z) and points
of convex set R, 160
equivalence of F(z) and points of con-
vex set D, 158-159
local defense of targets of equal value,
165-170
arbitrary defense, 167-170
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Separable games (cont.)
indivisible defense, 165-167
moments, 158
number of steps in step-function solu-
tion, 161
solution, 161-165
solution of polynomial games, 170-175
tactical reconnaissance, 175-178
Silent Duel, Monotonic Accuracies (ta-
ble), 142
Silent duels see Duels, silent
Simplified poker, 9-10
Solution of Polynomial Games (table),
174
Solution of Reconnaissance Games by
Mapping Methods (table), 94-95
Solutions, 79-96 (See also Continuocus
games, solution of)
examination of submatrices, 81-82
graphical, of 3x3 games, 85-88
guessing and verifying, 80-81
mapping methods:
games with constraints, 88-90
games without constraints, 91-92
reconnaissance games, 92-96
optimal strategies, solving for, 79-80
no-solution games, 115-116
successive approximations, 82-85
Step-functions, described, 100
Step-functions, Stieltjes integrals with re-
spect to, 104-105
Stieltjes integral, 100-106
and centinuous functions, 101-103
and expectation, 100-101
pbroperties of, 105-106
with respect to step-functions, 104-105
as Riemann integral, 104
Strategy and strategies:
concept of, 2-3
mixed see Mixed strategies
“poor,” 40-42
Submatrices, examination of, 81-82
Successive Approximations (table), 83
Successive approximations, as method of
solution, 82-85
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Tables:
Local Defense of Targets, 166

Local Defense of Targets—Arbitrary
Defense, 169

Local Defense of Targets—Solution
for 100 Targets, 171
Optimal Allocation of Forces Between
Two Tasks, 152
Optimal Allocation of Forces Among
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Silent Duel, Monotonic Accuracies, 142
Solution of Polynomial Games, 174
Solution of Reconnaissance Games by
Mapping Methods, 94-95
Successive Approximations, 83
Tactical game (air-war), 145-156
counter air and ground support, 147-
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formulation, 145-146
n~-move game, 148-151
optimal tactics for two tasks, 148-151
optimal tactics for three tasks, 151-156
Blue (stronger) splits forces, 153154
Blue’s defense decreases, 154
Blue’s defense in long campaign, 154,
156
campaign ends with ground support,
153
Red (weaker) mixes tactics, 154
payoff, 147
problem of, 145
Tactical reconnaissance—single mission,
175-178 see also Separable games
Targets:
attack, 54
defense, 54, 123-127
payoff, 54-55
prediction, 143-144
selection, 54-59
strategy, 54
verification, 56-59
Theory of Games and Economic Be-
havior, 1-2
Theory of games of strategy, 1-2
3x3 games, graphical solution of, 85-88
3 x 3 games, mapping method for solving,
91-92
Timing games see Duels
“Topological trees,” 74-76
Truncations, concept of, 76
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